Journal of Hydrodynamics

, Volume 18, Issue 1, pp 316–322

# Design and optimization method for a two-dimensional hydrofoil

• Ching-Yeh Hsin
• Jia-Lin Wu
• Sheng-Fong Chang
Session B5

## Abstract

In this paper, methods for the design and the optimization of two-dimensional hydrofoils are presented. First a previously developed potential flow design method is extended to the viscous flow computations. In this design method, the foil geometry is defined by B-splines, and the RANS method is utilized for the viscous flow computations. The foil is designed based on a prescribed pressure distribution, and the Newton-Raphson method is used to achieve a foil geometry generating the prescribed pressure distribution. In the design method described above, although designers can specify a pressure distribution based on the desired local characteristics, it is hard to know the forces on the desired foil in advance. Therefore, an “optimization method” by using the Lagrange multiplier method is then developed. The optimization problem described in the proposed paper is to satisfy the lift requirement by minimizing the drag force. The design variables are the angle of attack and the “geometry parameters”. In the presented design examples, the camber distribution and the pressure distribution “shape function” are selected as the geometry parameter. Both the “design” and the “optimization” methods can be used as a design tool individually; however, the combination of two methods provides a useful design tool that can not only optimize the global performance, but also design the detailed geometry according to designers’ requirements. Design examples are illustrated in the paper, and this design method is proved to be practical and effective.

## Key words

foil design lagrange multiplier method RANS

## References

1. [1]
Lighthill, M.J. “A new method of two-dimensional aerodynamic design”, RAND Technical Report M2112, ARC. 1945.Google Scholar
2. [2]
Tranen, J.L. (1974), “A rapid computer aided transonic airfoil design method”, AIAA paper 74-501.Google Scholar
3. [3]
Henne, P.A., “An inverse transonic wing design method”, AIAA paper 85-0330., 1980Google Scholar
4. [4]
Volpe, G and Melnik, R.E., “The design of transonic airfoils by a well posed inverse method”, Int. J. Numerical Methods in Engineering, Vol. 22, 1986Google Scholar
5. [5]
Eppler, R. and Somers, D.M., “A Computer Program for the Design and Analysis of Low-Speed Aitfoils”, Tech. Rep., NASA TM 80210, 1980Google Scholar
6. [6]
M. Giles, M. Drela, “A two-dimensional transonic aerodynamic design method, ” AIAA Journal, Vol.25, No.9, 1986.
7. [7]
M. Drela, “XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils”, in Low Reynolds Number Aerodynamics, Vol. 54, 1989, Springer-Verlag Lecture Notes in Eng.Google Scholar
8. [8]
De Falco, R. Del Balio, A. Della Cioppa and E. Tarantina, “A Parallel Genetic Algorithm for Transonic Airfoil Optimisation,” Evolutionary Computation, IEEE International Conference, Volume: 1, PP.429–434, 29 Nov-1 Dec 1996.Google Scholar
9. [9]
De Falco., “An introduction to Evolutionary Algorithms and their application to the Aerofoil Design Problem Part I:The Algorithms”, Inverse Design and Optimisation Method, von Karman Institute for Fluid Dynamics, Lecture Series, 1997-05.Google Scholar
10. [10]
De Falco. “An introduction to Evolutionary Algorithms and their application to the Aerofoil Design Problem Part II:The Results”, Inverse Design and Optimisation Method. von Karman Institute for Fluid Dynamics, Lecture Series 1997-05.Google Scholar
11. [11]
Shigeru Obayashi, Susumu Takanashi, “Genetic Algorithm for Aerodynamic Inverse Optimization Problems,” Genetic Algorithms in Engineering Systems: Innovations and Applications, pp.7-12, 12-14, Sep 1995.Google Scholar
12. [12]
Hsin, C.-Y., “Application of the panel method to the design of two-dimensional foil sections”, J. of Chinese Society of Naval Architecture and Marine Engineers, Vol.13, No.2, pp.1–11, 1994Google Scholar
13. [13]
Hsin, C.-Y. and Chang, Y.-L., “Solving a Hydrodynamic Design Problem by a Distributed Computing System”, Proceedings of the 3rd International Conference on Hydro-dynamics, Seoul Korea, Oct. 1998.Google Scholar
14. [14]
Hsin, C.-Y. and Chang, Y.-L., “A Hydrodynamic Design Method Developed on a Distributed Computing System”, Transcations of the Aeronautical and Astronautical Society, Vol. 32, No.1, pp.89–95, 2000Google Scholar
15. [15]
Wu, Jia-Lin, “Foil Design by Viscous Flow Computation, ” Master Thesis, National Taiwan Ocean University, 2005 (in Chinese)Google Scholar