Skip to main content
Log in

Betrachtungen zur gezielten Steigerung der mechanischen Festigkeit eines silikatkeramischen Werkstoffs in Abhängigkeit der Ausbildung des Werkstoffgefüges

  • Forschung & Technik
  • Published:
Keramische Zeitschrift

Kurzfassung

Die Bedeutung des Gefüges für die Steuerung der mechanischen Festigkeit silikatkeramischer Werkstoffe wird bereits bei der Auswahl geeigneter Rohstoffe deutlich, wenn es um die gezielte Bildung amorpher und kristalliner Phasen geht. Diese können im Werkstoff zu Gefügespannungen führen [1] oder aufgrund ihrer Morphologie das Gefüge beispielsweise durch Verzahnung verstärken [2]. Auf dem Weg zu einem leistungsfähigeren Werkstoff, komplexen Produktgeometrien und Wettbewerbsfähigkeit soll diese Arbeit als ein Beitrag zum Verständnis festigkeitsrelevanter Mechanismen dieser Werkstoffgruppe verstanden werden. Die Modifikation eines Feinsteinzeuges durch eine Rohstoffsubstitution beispielsweise mit Aluminiumoxid, Quarz und Nephelinsyenit führt zu einer signifikanten Steigerung der mechanischen Festigkeit. Die damit einhergehenden Wirkmechanismen werden durch röntgenographische Untersuchungen und konventionelle Messmethodik gezeigt und bewertet.

Abstract

The importance of the microstructure of silicate ceramic materials for their mechanical strength becomes immediately clear when selecting the raw materials to achieve a particular combination of amorphous and crystalline phases. These can lead to internal stresses in the material [1] or alternatively to a strengthening through the interlocking of their morphologies within the microstructure [2]. The aim of this work is to contribute to a general understanding of the mechanisms relevant to strength within this class of materials. This is part of a drive towards more effective materials, complex product geometries and increased competitiveness. Modification of a porcelain stoneware body by raw materials substitution with alumina, quartz and nepheline syenite leads to a significant increase in the mechanical strength of components. The accompanying mechanisms are revealed and evaluated by X-ray-based and conventional analytical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. Carty, M.W., Senapati, U.: Porcelain-Raw Materials, Processing, Phase Evolution, and Mechanical Behavior. J. Amer. Ceram. Soc. 81 (1998) [1] 3–20

    Article  CAS  Google Scholar 

  2. Mattyasovszky-Zsolnay, L.: Mechanical Strength of Porcelain. J. Amer. Ceram. Soc. (1957)

    Article  Google Scholar 

  3. Liebermann, J.: Vermeide Quarz im Tonerdeporzellan für Hochspannungsisolatoren I & II. Keram. Z. 53 (2001) [8]

  4. Sane, S.C., Cook, R.L.: Effect of Grinding and Firing Treatment on the Crystalline and Glass Content and the Physical Porperties of Whiteware Bodies. J. of the Amer. Ceram. Soc. 34 (1951) [5] 145–151

    Article  CAS  Google Scholar 

  5. Schroeder, J.E.: Inexpensive High Strength Electrical Porcelain. J. of the Amer. Ceram. Soc. Bull. (1978)

  6. Martin-Márquez, J., Rincón, J.M., Romero, M.: Effect of microstructure on mechanical properties of porcelain stoneware. J. of the Europ. Ceram. Soc. 30 (2010) [15] 3063–3069

    Article  Google Scholar 

  7. Carbajal, L., Rubio-Marcos, F., Bengochea, M.A., Fernandez, J.F.: Properties related phase evolution in porcelain ceramics. J. of the Europ. Ceram. Soc. 27 (2007) 4065–4069

    Article  Google Scholar 

  8. Weyl, D.: Über den Einfluss innerer Spannungen auf das Gefüge und die mechanische Festigkeit des Porzellans. Ber. der Deutschen Keram. Ges. e.V. (1959) 319–324

  9. Hasselman, D.P.H., Fulrath, R.M.: Proposed Fracture Theory of a Dispersion-Strengthened Glass Matrix. J. of the Amer. Ceram. Soc. 49 (1966) [2]

    Article  CAS  Google Scholar 

  10. Maity, S., Mukhopadhyay, T.K., Sarkar, B.K.: Sillimanite Sand-Felspar Porcelains: I. Vitrification Behaviour and Mechanical Properties. Interceram 45 (1996) [5]

  11. Klein, G., Ersen, B.: Vergleichende Betrachtung des Einsatzes der Feldspat- und Nephelinsyenit-Rohstoffe als Flussmittel für silicatkeramische Werkstoffe, Teil I & II. Keram. Z. 53 (2001) 10, 12

  12. Szibor, H., Hennicke, H.W.: Zum Zusammenhang von Gefügedaten und mechanischen Eigenschaften von Porzellanwerkstoffen, Teil II.

  13. Rösler, J., Harders, H., Bäker, M.: Mechanical Behaviour of Engineering Materials — Metals, Ceramics, Polymers and Composites. Springer-Verlag Berlin/Heidelberg (2007)

  14. Cohrt, H., Gratwohl, G.: „Festigkeit keramischer Hochtemperaturwerkstoffe.“ VDI Berichte 4.600, (1987) 137–175

  15. Buresch, F.E.: Bewertung von Kennwerten der statistischen Bruchmechanik. Ber. Dt.Keram. Ges. 54 (1977) [12] 425–429

    CAS  Google Scholar 

  16. Klein, G.: Feldspäte. Keramiker-Jahrbuch 2001. Göller-Verlag, Baden-Baden (2001)

  17. DIN EN 843-1: Hochleistungskeramik — Mechanische Eigenschaften monolithischer Keramik bei Raumtemperatur - Teil 1: Bestimmung der Biegefestigkeit. (2008)

  18. DIN EN 843-5: Hochleistungskeramik — Mechanische Eigenschaften monolithischer Keramik bei Raumtemperatur — Teil 5: Statistische Auswertung (2007)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulbrich, C., Klein, G. Betrachtungen zur gezielten Steigerung der mechanischen Festigkeit eines silikatkeramischen Werkstoffs in Abhängigkeit der Ausbildung des Werkstoffgefüges. Keram. Z. 69, 146–154 (2017). https://doi.org/10.1007/BF03400331

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03400331

Stichwörter

Navigation