Skip to main content
Log in

Some Observations of Subgrain Formation During Creep in High Purity Aluminum

  • Transaction
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Coarse grained high purity aluminum was tested in creep at temperatures of 400° to 1200°F to develop subgrain structures. Measurements of subgrain size, distribution, and rotation were made from X-ray diffraction patterns. Subgrain size and distribution were checked metallographically and the size was compared with average slip band spacing. The slip family was determined for several specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. H. M. Jenkins and G. A. Mellor: Investigation of the Behavior of Metals under Deformation at High Temperatures. Part I: Structural Changes in Mild Steel and Commercial Irons During Creep. Journal Iron and Steel Inst. (1935) 132, p. 179.

    Google Scholar 

  2. G. A. Homes: Recherches sur le mecanisme structural du comportement mecanique des metaux aux temperatures elevees. Revue de Metallurgie (1939) 36, p. 373.

    Article  Google Scholar 

  3. H. Hirst: Deformation of Single Crystals of Lead by Creep. Part IV: Process of deformation during creep. Proc. Australasian Inst, of Mining and Metallurgy (1941) 121, p. 11.

    Google Scholar 

  4. E. A. Calnan and B. D. Burns: Some X-ray Observations of the Nature of Creep Deformation in Polycrystalline Aluminum. Journal Inst. Metals (1950) 77, p. 445.

    Google Scholar 

  5. G. R. Wilms and W. A. Wood: Mechanism of Creep in Metals. Journal Inst. Metals (1949) 75, p. 693.

    Google Scholar 

  6. W. A. Wood and W. A. Rachinger: The Mechanism of Deformation in Metals with Special Reference to Creep. Journal Inst. Metals (1949) 76, p. 237.

    Google Scholar 

  7. W. A. Wood and R. F. Scrutton: Mechanism of Primary Creep in Metals. Journal Inst. Metals (1950) 77, p. 423.

    Google Scholar 

  8. W. A. Wood, G. R. Wilms, and W. A. Rachinger: Three Basic Stages in the Mechanism of Deformation of Metals at Different Temperatures and Strain-Rates. Journal Inst. Metals (1951) 79, p. 159.

    Google Scholar 

  9. W. A. Wood, G. R. Wilms, and W. A. Rachinger: Authors’ answer to discussion. Journal Inst. Metals (1949) 75, p. 1138.

    Google Scholar 

  10. G. B. Greenough and E. M. Smith: The Mechanism of Creep as Revealed by X-ray Methods. Journal Inst. Metals (1950) 77, p. 435.

    Google Scholar 

  11. A. Guinier and J. Tennevin: Sur deux variantes de la methode de Laue et leurs applications. Acta Crystallographica (1949) 2, p. 133.

    Article  Google Scholar 

  12. P. Lacombe and L. Beaujard: The Application of Etch-Figures on Pure Aluminum (99.99%) to the Study of Some Micrographic Problems. Journal Inst. Metals (1947) 74, p. 1.

    Google Scholar 

  13. G. Wyon and C. Crussard: Modifications de Structure de 1’aluminium au cours du fluage. Revue de Metallurgie (1951) 48, p. 121.

    Article  Google Scholar 

  14. R. W. Cahn: Recrystallization of Single Crystals After Plastic Bending. Journal Inst. Metals (1949) 76, p. 121.

    Google Scholar 

  15. C. G. Dunn and F. W. Daniels: Formation and Behavior of Subboundaries in Silicon Iron Crystals. Trans. AIME (1951) 191, p. 147; Journal of Metals (February 1951).

    Google Scholar 

  16. R. W. Cahn: Slip and Polygonization in Aluminium. Journal Inst. Metals (1951) 79, p. 129.

    Google Scholar 

  17. I. S. Servi and N. J. Grant: Creep and Stress Rupture Behavior of Aluminum as a Function of Purity. Trans. AIME (1951) 191, p. 909; Journal of Metals (October 1951). Structure Observations of Aluminum Deformed in Creep at Elevated Temperatures. Trans. AIME (1951) 191, p. 917; Journal of Metals (October 1951).

    Google Scholar 

  18. P. A. Jacquet: Le polissage electrolytique des surfaces metalliques et ses applications. Editions Metaux Saint Germain-en-Laye (S. -et-O) (1948).

    Google Scholar 

  19. I. S. Servi and N. J. Grant: Metallographic Techniques for High Purity Aluminum. Trans. AIME (1951) 191, p. 473; Journal of Metals (June 1951).

    Google Scholar 

  20. E. Orowan: Origin and Spacing of Slip Bands. Nature (1941) 147, p. 452.

    Article  Google Scholar 

  21. H. C. Chang and N. J. Grant: Observations of Creep of the Grain Boundary in High Purity Aluminum. Journal of Metals (June 1952) Trans. AIME, p. 619.

    Google Scholar 

  22. A. M. Gervais: Private communication.

  23. C. S. Barrett: Structure of Metals. (1943) New York. McGraw-Hill Book Co.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

I. S. Servi, formerly Research Assistont, Massachusetts Institute of Technology

Discussion on this paper, TP 3345E, may be sent, 2 copies, to AIME by Dec. 1, 1952. Manuscript, March 24, 1952. Philadelphia Meeting, October 1952.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Servi, I.S., Norton, J.T. & Grant, N.J. Some Observations of Subgrain Formation During Creep in High Purity Aluminum. JOM 4, 965–971 (1952). https://doi.org/10.1007/BF03397754

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03397754

Navigation