Skip to main content
Log in

Annealing Textures in Rolled Face-Centered Cubic Metals

  • Transaction
  • Published:
JOM Aims and scope Submit manuscript

Abstract

As described by means of quantitative pole figures, the annealing texture of highly rolled aluminum consists of the four retained components of the rolling texture near (123) [12̄1], rather more sharply developed, and of a cube texture component. Local reorientation corresponds fairly well to 40° rotation around a [111] axis. In copper strip rolled 96 pct, the annealing texture is mainly the cube texture, with the four twin orientations as minor components. The annealing texture of highly rolled brass strip consists of four components of the (225) [734̄] type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Wassermann: Texturen Metallischer Werkstoffe. (1939) Berlin.

    Google Scholar 

  2. C. S. Barrett: Structure of Metals. 1st ed. p. 420 (1943) New York. McGraw-Hill Book Co.

    Google Scholar 

  3. C. G. Dunn: Recrystallization Textures. Symposium on Cold Working of Metals. A.S.M. (1949) p. 113.

    Google Scholar 

  4. T. Ll. Richards: Preferred Orientation in Non-ferrous Metals. Progress in Metal Physics. Edited by B. Chalmers. Vol. I, p. 281 (1949) London and New York.

    Google Scholar 

  5. W. G. Burgers and P. C. Louwerse: Uber den Zusamenhang Zwischen Deformationsvorgang und Rekristallisationstextur bei Aluminium. Ztsch. f. Physik (1931) 67, p. 605.

    Article  Google Scholar 

  6. C. S. Barrett: Recrystallization Texture in Aluminum after Compression. Trans. AIME (1940) 137, p. 128.

    Google Scholar 

  7. P. A. Beck and H. Hu: Recrystallization Texture and Coarsening Texture in High Purity Aluminum. Trans. AIME (1949) 185, p. 627; Journal of Metals (September 1949).

    Google Scholar 

  8. P. A. Beck: Orientation in Recrystallization and Grain Growth. The Physics of Powder Metallurgy. p. 40 (1951) New York. McGraw-Hill Book Co.

    Google Scholar 

  9. M. L. Kronberg and F. H. Wilson: Secondary Recrystallization in Copper. Trans. AIME (1949) 185, p. 501; Journal of Metals (August 1949).

    Google Scholar 

  10. J. S. Bowles and W. Boas: The Effect of Crystal Arrangement on “Secondary Recrystallization” in Metals. Journal Inst. Metals (1948) 24, p. 501.

    Google Scholar 

  11. G. W. Rathenau and J. F. H. Custers: Secondary Recrystallization of Face-Centered Nickel-iron Alloys. Phillips Research Reports (1949) 4, p. 241.

    Google Scholar 

  12. P. A. Beck, P. R. Sperry, and H. Hu: The Orientation Dependence of the Rate of Grain Boundary Migration. Journal of Applied Physics (1950) 21, p. 420.

    Article  Google Scholar 

  13. P. A. Beck: Theory of Annealing Textures. Trans. AIME (1951) 191, p. 475; Journal of Metals (June 1951).

    Google Scholar 

  14. B. F. Decker, E. T. Asp, and D. Harker: Preferred Orientation Determination using a Geiger Counter I X-ray Diffraction Goniometer. Journal of Applied Physics (1948) 19, p. 388.

    Article  Google Scholar 

  15. L. G. Schulz: A Direct Method of Determining I Preferred Orientation of a Flat Reflection Sample Using a Geiger Counter X-ray Spectrometer. Journal of Applied Physics (1949) 20, p. 1030.

    Article  Google Scholar 

  16. H. Hu, P. R. Sperry, and P. A. Beck: Rolling Textures in Face-centered Cubic Metals. This issue, p. 76.

  17. P. Lacombe and L. Beaujard: Étude Microscopique de l’écrouissage et de la recristallization de l’aluminium extra-pur. Revue Metallurgie (1947) 44, p. 71.

    Article  Google Scholar 

  18. P. Lacombe and L. Beaujard: Étude metallographique et cristallographique de la croissance et de la structure des pellicules d’oxydation anodique de I l’aluminium. In the book published by the Comité General D’Organisation des Industries Mécaniques, Études sur les Aspects des Pellicules D’Oxydation Anodique Formées sur L’Aluminium et ses Alliages. (1944).

    Google Scholar 

  19. A. Hone and E. C. Pearson: Grain Orientation in Aluminum revealed by Anodic Film. Metal Progress (1948) 53, p. 363.

  20. P. R. Sperry: Method for Studying Grain Boundary Migration in Aluminum. Trans. AIME (1950) 188, p. 103; Journal of Metals (January 1950).

    Google Scholar 

  21. C. Crussard: Étude du Recuit de l’aluminium. Revue Metallurgie (1944) 41, p. 140.

    Google Scholar 

  22. R. W. Cahn: Recrystallization of Single Crystals I after Plastic Bending. Journal Inst. Metals (1949) 76, p. 121.

    Google Scholar 

  23. J. N. Keller, P. H. Hirsch, and J. S. Thorp: An X-ray Micro-beam Examination of a Plastically Deformed Metal. Nature (1950) 165, p. 554.

    Article  Google Scholar 

  24. R. D. Heidenreich: Electron Transmission Through Thin Metal Sections. Bell Telephone Lab., Inc. (1951).

    Google Scholar 

  25. D. McLean, A. E. L. Tate, and M. H. Farmer: Sub crystals in Aluminum Observed with Polarized Light. Nature (1950) 165, p. 70.

    Article  Google Scholar 

  26. V. Goeler and G. Sachs: Walz- und Rekristallisationstextur regulaer—flaechen zentrierter Metalle I. Ztsch. f. Physik (1927) 41, p. 873.

    Article  Google Scholar 

  27. E. Schmid and G. Wassermann: Zur Rekristallisation von Aluminiumblech. Metallwirtschaft (1931) 10, p. 409.

    Google Scholar 

  28. Answer to the discussion of ref. 7. Trans. AIME (1950) 188, p. 1057; Journal of Metals (August 1950).

  29. G. W. Rathenau and G. Baas: Grain Growth in a Texture, Studied by Means of Electron-Emission Microscopy. Physica (1951) 17, p. 117.

    Article  Google Scholar 

  30. P. A. Beck: Origin of the Cube Texture in Face-Centered Cubic Metals. Trans. AIME (1951) 191, p.475; Journal of Metals (June 1951).

    Google Scholar 

  31. O. Dahl and Pawlek: Kornordnung und Kornwachstum bei Walzblechen. Ztsch. f. Metallkunde (1936) 28, p. 266.

    Google Scholar 

  32. M. Cook and T. Ll. Richards: The Self-Annealing of Copper. Journal Inst. Metals (1944) 70, p. 159.

    Google Scholar 

  33. W. H. Baldwin: Effect of Rolling and Annealing upon the Crystallography, Metallography and Physical Properties of Copper Strip. Trans. AIME (1946) 166, p. 591.

    Google Scholar 

  34. M. K. Yen: A Study of Textures and Earing Behavior of Cold-rolled (87–89 pct) and Annealed Copper Strips. Trans. AIME (1949) 185, p. 59; Journal of Metals (January 1949).

    Google Scholar 

  35. C. S. Smith: Discussion of ref. 8, p. 50.

  36. J. E. Burke: Personal communication.

  37. M. Cook and T. Ll. Richards: The Structural Changes Effected in 70–30 Brass Strip by Cold Rolling and Annealing. Journal Inst. Metals (1943) 69, p. 351.

    Google Scholar 

  38. F. H. Wilson and R. M. Brick: Textures, Anisotropy and Earing Behavior of Brass. Trans. AIME (1945) 161, p. 173.

    Google Scholar 

  39. F. D. Rosi and B. H. Alexander: Measurements on the Rate of Secondary Recrystallization in High Purity Silver. Journal of Metals (October 1950) p. 1217.

    Google Scholar 

  40. P. A. Beck and H. Hu: Annealing Texture in Rolled Aluminum Strip. Journal of Metals (October 1950) p. 1215.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Discussion on this paper, TP 3206E, may be sent, 2 copies, to AIME by April 1, 1952. Manuscript, July 16, 1951. New York Meeting, February 1952.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beck, P.A., Hu, H. Annealing Textures in Rolled Face-Centered Cubic Metals. JOM 4, 83–90 (1952). https://doi.org/10.1007/BF03397656

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03397656

Navigation