The Behavior Analyst

, Volume 15, Issue 1, pp 51–60 | Cite as

Probability and Radical Behaviorism

  • James M. Espinosa
Article
  • 4 Downloads

Abstract

The concept of probability appears to be very important in the radical behaviorism of Skinner. Yet, it seems that this probability has not been accurately defined and is still ambiguous. I give a strict, relative frequency interpretation of probability and its applicability to the data from the science of behavior as supplied by cumulative records. Two examples of stochastic processes are given that may model the data from cumulative records that result under conditions of continuous reinforcement and extinction, respectively.

Key words

probability of response cumulative record stochastic process schedule of reinforcement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ballentine, L. E. (1986). Probability theory in quantum mechanics. American Journal of Physics, 54, 883–889.CrossRefGoogle Scholar
  2. Bhat, U. N. (1984). Elements of applied stochastic processes. New York: Wiley.Google Scholar
  3. Ferster, C. B., & Skinner, B. F. (1957). Schedules of reinforcement. New York: Appleton-Century-Crofts.CrossRefGoogle Scholar
  4. Haimos, P. R. (1944). The foundations of probability. The American Mathematical Monthly, 51, 493–510.CrossRefGoogle Scholar
  5. Johnson, L. M., & Morris, E. K. (1987). When speaking of probability in behavior analysis. Behaviorism, 15, 107–129.Google Scholar
  6. Kemble, E. C. (1942). Is the frequency theory of probability adequate for all scientific purposes? American Journal of Physics, 10, 6–16.CrossRefGoogle Scholar
  7. Keynes, J. M. (1973). A treatise on probability. London: Macmillan.CrossRefGoogle Scholar
  8. Killeen, P. R. (1985). Reflections on a cumulative record. The Behavior Analyst, 8, 177–183.PubMedPubMedCentralGoogle Scholar
  9. Laplace, P. S. Marquis de (1886). Theorie analytique des probabilités. Paris: Gauthier-Villar.Google Scholar
  10. Skinner, B. F. (1938). The behavior of organisms. New York: Appleton-Century-Crofts.Google Scholar
  11. Skinner, B. F. (1944). A review of Hull’s Principles of behavior. The American Journal of Psychology, 57, 276–281.CrossRefGoogle Scholar
  12. Skinner, B. F. (1953). Science and human behavior. New York: Macmillan.Google Scholar
  13. Skinner, B. F. (1957a). The experimental analysis of behavior. American Scientist, 45, 343–371.Google Scholar
  14. Skinner, B. F. (1957b). Verbal behavior. New York: Appleton-Century-Crofts.CrossRefGoogle Scholar
  15. Skinner, B. F. (1966). Operant behavior. In W. K. Honig (Ed.), Operant behavior: Areas of research and application. New York: Appleton-Century-Crofts.Google Scholar
  16. Skinner, B. F. (1969). Contingencies of reinforcement: A theoretical analysis. New York: Appleton-Century-Crofts.Google Scholar
  17. Skinner, B. F. (1976). Farewell, my lovely! Journal of the Experimental Analysis of Behavior, 25, 218.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Skinner, B. F. (1979). The shaping of a behaviorist. New York: Alfred A. Knopf.Google Scholar
  19. von Mises, R. (1964). Mathematical theory of probability and statistics. New York: Academic.Google Scholar
  20. von Mises, R. (1981). Probability, statistics and truth. New York: Dover.Google Scholar
  21. Williams, D. (1945). On the derivation of probabilities from frequencies. Philosophy and Phenomenological Research, 5, 449–483.CrossRefGoogle Scholar
  22. Zeiler, M. D. (1984). The sleeping giant: Reinforcement schedules. Journal of the Experimental Analysis of Behavior, 42, 485–493.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Association for Behavior Analysis International 1992

Authors and Affiliations

  • James M. Espinosa
    • 1
  1. 1.Department of Chemistry and PhysicsTexas Woman’s UniversityDentonUSA

Personalised recommendations