The Behavior Analyst

, Volume 12, Issue 2, pp 143–151 | Cite as

Some Remarks on the Quantitative Analysis of Behavior

  • M. Jackson Marr
Article

Abstract

This paper discusses similarities between the mathematization of operant behavior and the early history of the most mathematical of sciences—physics. Galileo explored the properties of motion without dealing with the causes of motion, focusing on changes in motion. Newton’s dynamics were concerned with the action of forces as causes of change. Skinner’s rationale for using rate to describe behavior derived from an interest in changes in rate. Reinforcement has played the role of force in the dynamics of behavior. Behavioral momentum and maximization have received mathematical formulations in behavior analysis. Yet to be worked out are the relations between molar and molecular formulations of behavioral theory.

Key words

physics mathematical models behavioral momentum behavioral dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baum, W. (1974). On two types of deviation from the matching law: Bias and undermatching. Journal of the Experimental Analysis of Behavior, 22, 231–242.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bradshaw, C. M., & Szabadi, E. (1988). Quantitative analysis of human operant behavior. In G. C. L. Davey & C. Cullen (Eds.), Human operant conditioning and behavior modification (pp. 225–259). Chichester, England: Wiley.Google Scholar
  3. Catania, A. C. (1981). Discussion: The flight from experimental analyses. In C. M. Bradshaw, E. Szabadi, & C. F. Lowe (Eds.), Quantification of steady-state operant behavior (pp. 49–64). Amsterdam: Elsevier/North Holland.Google Scholar
  4. Commons, M. L., Mazur, J. E., Nevin, J. A., & Rachlin, H. (Eds.). (1987). Quantitative analyses of behavior (Vol. V). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  5. Findley, J. D. (1958). Preference and switching under concurrent scheduling. Journal of the Experimental Analysis of Behavior, 1, 123–144.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Harzem, P., & Miles, T. R. (1978). Conceptual issues in operant behavior. Chichester, England: Wiley.Google Scholar
  7. Kitcher, P. S. (1983). The nature of mathematical knowledge. New York: Oxford University Press.Google Scholar
  8. Kitcher, P. S. (1988). Mathematical naturalism. In W. Aspray & P. Kitcher (Eds.), History and philosophy of modern mathematics (pp. 293–325). Minneapolis: University of Minnesota Press.Google Scholar
  9. Kline, M. (1980). Mathematics: The loss of certainty. New York: Oxford University Press.Google Scholar
  10. Mach, E. (1960). The science of mechanics (T. J. McCormack, Trans.). La Salle, IL: Open Court. (Original work published 1883)Google Scholar
  11. Marr, M. J. (1986). Mathematics and verbal behavior. In T. Thompson & M. D. Zeiler (Eds.), Analysis and integration of behavioral units (pp. 161–183). Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  12. McDowell, J. J., (1982). The importance of Herrnstein’s mathematical statement of the laws of effect for behavior therapy. American Psychologist, 37, 771–779.CrossRefPubMedGoogle Scholar
  13. McDowell, J. J., & Kessel, R. (1979). A multivariate rate equation for variable interval performance. Journal of the Experimental Analysis of Behavior, 31, 267–283.CrossRefPubMedPubMedCentralGoogle Scholar
  14. McDowell, J. J., & Wixted, J. T. (1988). The linear system theory’s account of behavior maintained by variable ratio schedules. Journal of the Experimental Analysis of Behavior, 49, 143–169.CrossRefPubMedPubMedCentralGoogle Scholar
  15. McSweeney, F. K., Farmer, V. A., Dungan, J. D., & Whipple, J. E. (1986). The generalized matching law as a description of multiple-schedule responding. Journal of the Experimental Analysis of Behavior, 45, 83–101.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Miller, G. A. (1964). Mathematics and psychology. New York: Wiley.Google Scholar
  17. Morse, W. H. (1966). Intermittent reinforcement. In W. K. Honig (Ed.), Operant behavior: Areas of research and application (pp. 52–108). New York: Appleton-Century-Crofts.Google Scholar
  18. Myerson, J., & Hale, S. (1988). Choice in transition: A comparison of melioration and the kinetic model. Journal of the Experimental Analysis of Behavior, 49, 291–302.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Nevin, J. A. (1979). Reinforcement schedules and response strength. In M. D. Zeiler & P. Harzem (Eds.), Reinforcement and the organization of behavior (pp. 117–158). Chichester, England: Wiley.Google Scholar
  20. Nevin, J. A. (1984). Quantitative analysis. Journal of the Experimental Analysis of Behavior, 42, 421–434.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Nevin, J. A. (1988). Behavioral momentum and the partial reinforcement effect. Psychological Bulletin, 103, 44–56.CrossRefGoogle Scholar
  22. Nevin, J. A., Mandell, C., & Atak, J. R. (1983). The analysis of behavioral momentum. Journal of the Experimental Analysis of Behavior, 39, 49–59.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Park, D. (1988). The how and the why. Princeton, NJ: Princeton University Press.Google Scholar
  24. Prigogene, I., & Stengers, I. (1984). Order out of chaos. New York: Bantam Books.Google Scholar
  25. Shimp, C. P. (1979). The local organization of behavior: Method and theory. In M. D. Zeiler & P. Harzem (Eds.), Reinforcement and the organization of behavior (pp. 261–298). Chichester, England: Wiley.Google Scholar
  26. Shimp, C. P. (1982). Reinforcement and the local organization of behavior. In M. L. Commons, R. J. Heimstein, & H. Rachlin (Eds.), Quantitative analysis of behavior (Vol. II). Cambridge, MA: Ballinger.Google Scholar
  27. Skinner, B. F. (1938). The behavior of organisms. New York: Appleton-Century-Crofts.Google Scholar
  28. Skinner, B. F. (1969). Contingencies of reinforcement. New York: Appleton-Century-Crofts.Google Scholar
  29. Skinner, B. F. (1972a). Are theories of learning necessary? In B. F. Skinner, Cumulative record (3rd ed., pp. 69–100). New York: Appleton-Century-Crofts.Google Scholar
  30. Skinner, B. F. (1972b). Case history in scientific method. In B. F. Skinner, Cumulative record (3rd ed., pp. 101–124). New York: Appleton-Century-Crofts.Google Scholar
  31. Skinner, B. F. (1972c). The flight from the laboratory. In B. F. Skinner, Cumulative record (3rd ed. pp. 314–330). New York: Appleton-Century-Crofts.Google Scholar
  32. Skinner, B. F. (1974). About behaviorism. New York: Knopf.Google Scholar
  33. Wilson, C. (1972). How did Kepler discover his first two laws? Scientific American, 226, 92–106.CrossRefGoogle Scholar

Copyright information

© Association for Behavior Analysis International 1989

Authors and Affiliations

  • M. Jackson Marr
    • 1
  1. 1.School of PsychologyGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations