Cluster-based selection


In the pharmaceutical industry, the use of appropriately selected compound subsets plays an important role in enhancing the information return in areas such as low-throughput biological screening, combinatorial synthesis, and compound acquisition. Cluster-based selection methods have been employed and have proven useful in accomplishing this task.

This is a preview of subscription content, access via your institution.


  1. 1.

    Willett, P., Similarity and Clustering in Chemical Information Systems, Research Studies Press, Letchworth, 1987.

    Google Scholar 

  2. 2.

    Sneath, P.H.A. and Sokal, R.R., Numerical Taxonomy, Freeman, San Francisco, CA, 1973.

    Google Scholar 

  3. 3.

    Jarvis, R.A. and Patrick, E.A., IEEE Trans. Comput., C-22 (1973) 1025.

    Article  Google Scholar 

  4. 4.

    Shemetulskis, N.E., Dunbar Jr., J.B., Dunbar, B.W., Moreland, D.W. and Humblet, C., J. Comput.-Aided Mol. Design, 9 (1995) 407.

    CAS  Article  Google Scholar 

  5. 5.

    Chemical Abstract Service, Columbus, OH.

  6. 6.

    Daylight Chemical Information Software, Daylight Chemical Information Inc., Mission Viejo, CA.

  7. 7.

    Turner, D.B., Tyrell, S.M. and Willett, P., J. Chem. Inf. Comput. Sci., 37 (1997) 18.

    CAS  Article  Google Scholar 

  8. 8.

    Brown, R.D. and Martin, Y.C., J. Chem. Inf. Comput. Sci., 36 (1996) 572.

    CAS  Article  Google Scholar 

  9. 9.

    Brown, R.D., Bures, M.G. and Martin, Y.C., Similarity and cluster analysis applied to molecular diversity, American Chemical Society Meeting, Anaheim, CA, 1995, COMP3.

    Google Scholar 

  10. 10.

    Maccs II, Molecular Design Ltd., San Leandro, CA.

  11. 11.

    Unity, Tripos Inc., St. Louis, MO.

  12. 12.

    Bures, M.G., Brown, R.D. and Martin, Y.C., Analyzing large chemical databases to increase the diversity of a corporate compound collection, American Chemical Society Meeting, Chicago, IL, 1995.

    Google Scholar 

  13. 13.

    Lewis, R., Mason, J. and Menard, P., Rational screening sets: Approaches and comparison using structural and property diversity methods, American Chemical Society Meeting, Washington, DC, 1995.

    Google Scholar 

  14. 14.

    Davies, K., In Chaiken, I.M. and Janda, K.D. (Eds.) Molecular Diversity and Combinatorial Chemistry, American Chemical Society, Washington, DC, 1996, pp. 309–316.

    Google Scholar 

  15. 15.

    Optiverse library, Tripos Inc., St. Louis, MO; Panlabs Inc., Bothell, WA.

  16. 16.

    Patterson, D.E., Cramer, R.D., Ferguson, A.M., Clark, R.D. and Weinberger, L.E., J. Med. Chem., 39 (1996) 3049.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Cramer, R.D., Clark, R.D., Patterson, D.E. and Ferguson, A.M., J. Med. Chem., 39 (1996) 3060.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Matter, H. and Lassen, D., Chim. Oggi, 14 (1996) 9.

    CAS  Google Scholar 

  19. 19.

    Brown, R.D. and Martin, Y.C., J. Chem. Inf. Comput. Sci., 37 (1997) 1.

    CAS  Article  Google Scholar 

  20. 20.

    Davies, K. and Briant, C., Combinatorial chemistry library design, using pharmacophore diversity, Network Science,

  21. 21.

    Pearlman, R.S., Novel software tools for addressing chemical diversity, Network Science,

  22. 22.

    Moreau, G., Proceedings of the IBC meeting on Combinatorial Chemistry, London, 1995.

    Google Scholar 

  23. 23.

    Barnard Chemical Information Ltd., Stannington, Sheffield.

Download references

Author information



Corresponding author

Correspondence to James B. Dunbar Jr..

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dunbar, J.B. Cluster-based selection. Perspectives in Drug Discovery and Design 7, 51–63 (1996).

Download citation

Key words

  • clustering
  • compound acquisition
  • compound selection
  • molecular fingerprint