Skip to main content
Log in

Subwavelength Electromagnetic-Field Narrowing

  • Published:
Journal of Russian Laser Research Aims and scope

Abstract

This paper is primarily aimed at experimental verification of results of theoretical studies of the possibility of concentration of an electromagnetic wave on areas of a size much smaller than the wavelength λ with the help of doubly connected narrowing waveguides. Fundamentally important experimental results, in both the microwave and optical ranges, have been obtained on an installation containing a biconical horn in the form of a conical needle and a metal plane. A fundamental convergent mode has been excited. A reflected fundamental mode appeared and changed sharply as the vertex of the conical needle approached the plane at a distance of the order of several nanometers and closer. The predictions of the theory concerning the concentration of electromagnetic (microwave and optical) radiation in a biconical horn onto objects with a size of the order of a nanometer with almost no losses have been confirmed experimentally. The possibility of increasing the sensitivity of the methods of spectroscopy of individual impurity sites using a biconical horn for coupling with the near field of a quantum oscillator (atom, molecule) in a quasi-stationary region is also investigated. The efficiency of electric-dipole radiation emission into a biconical horn increases by a factor of (λ/r0)4 compared to spontaneous radiation into free space (here λ is the wavelength and r0 is the distance from the dipole to the horn input). We have shown experimentally that it is possible in principle to create a device functioning as a sensor (a near-field electromagnetic microscope) and as an instrument of the action by a strong electromagnetic field (simultaneously at several frequencies) with a spatial resolution of the order of 1 nm in the optical and microwave ranges. Results of experiments of other authors are discussed in terms of concepts of convergent and divergent waves in a biconical horn. The feasibility of extending these methods to the extreme UV and soft x-ray ranges is pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Zuev and A. V. Frantsesson, Quantum Electronics, 26, 250 (1996).

    Article  ADS  Google Scholar 

  2. V. S. Zuev and T. I. Kuznetsova, Quantum Electronics, 27, 450 (1997).

    Article  ADS  Google Scholar 

  3. S. A. Schelkunoff, Electromagnetic Waves, van Nostrand, New York (1947).

    MATH  Google Scholar 

  4. L. A. Vainshtein, Electromagnetic Waves [in Russian], Radio i Svyaz’, Moscow (1988).

    Google Scholar 

  5. V. S. Zuev and A. V. Frantsesson, “Fundamental wave in a biconical horn with finitely conducting walls” [in Russian], Preprint No. 44 of the P. N. Lebedev Physical Institute, Moscow (1996); Radiotekh. Elektron. (1998, in press).

    Google Scholar 

  6. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media, Pergamon Press, Oxford (1984).

    Google Scholar 

  7. V. S. Gurevich and M. N. Libenson, Ultramicroscopy, 57, 277 (1995).

    Article  Google Scholar 

  8. J. Takahara, S. Yamagishi, H. Taki, et al., Opt. Lett, 22, 457 (1997).

    Article  Google Scholar 

  9. B. Prade and J. Y. Vinet, J. Lightwave Technol., 12, 6 (1994).

    Article  ADS  Google Scholar 

  10. D. A. Lapshin, S. K. Sekatskii, V. S. Letokhov, and V. N. Reshetov, JETP Lett, 67, 245 (1998).

    Article  Google Scholar 

  11. K. Lieberman, S. Harush, A. Lewis, and R. Kopelman, Science, 247, 59 (1990).

    Article  ADS  Google Scholar 

  12. A. Sanchez, C. F. Davis, Jr., K. C. Lin, and A. Javan, J. Appl Phys., 49, 527 (1978).

    Article  Google Scholar 

  13. L. Novotny and D. W. Pohl, in: O. Marti and R. Moeller (eds.), Photons and Local Probes, Kluwer Academic, the Netherlands (1995), p. 21.

  14. W. Denk and D. W. Pohl, J. Vac. Sci. Techno. B, 510 (1991), cited from

  15. A. V. Bragas, S. M. Landi, and O. E. Martinez, Appl. Phys. Lett., 72, 2075 (1998).

    Article  ADS  Google Scholar 

  16. U. Ch. Fischer and M. Zapletal, Ultramicroscopy, 42–44, 393 (1992).

    Article  Google Scholar 

  17. D. W. van der Weide and P. Neuzil, J. Vac. Sci. Technol. B, 14, 4144 (1996).

    Article  Google Scholar 

  18. F. Keilmann, D. W. van der Weide, T. Eickelkamp, et al., Opt. Commun., 129, 15 (1996).

    Article  ADS  Google Scholar 

  19. R. D. Grober, R. J. Schoelkopf, and D. E. Prober, Appl. Phys. Lett, 70, 1354 (1997).

    Article  ADS  Google Scholar 

  20. S. J. Tans et al., Nature (7 May 1998), cited from The AIP Bulletin of Physics News, No. 371 (May 13, 1998).

    Google Scholar 

  21. A. Bezryadin, C. Dekker, and G. Schmid, AppL Phys. Lett, 71, 1273 (1997).

    Article  ADS  Google Scholar 

  22. M. Specht, J. D. Pedarnig, W. M. Heckl, and T. W. Hansch, Phys. Rev. Lett, 68, 476 (1992).

    Article  ADS  Google Scholar 

  23. K. Dickmann, J. Jersch, and F. Demming, Surf. Interface Anal., 25, 500 (1997) (cited from the manuscript, the authors are grateful to Drs. K. Dickmann and J. Jersch for the possibility of acquaintance with the material).

    Article  Google Scholar 

  24. V. S. Zuev and A. V. Frantsesson, Kratkie Soobshcheniya po Fizike (Bulletin of the Lebedev Phys. Inst.), No. 7, 46 (1998).

    Google Scholar 

  25. L. de Broglie, Problems de Propagations Guidees des Ondes Electromagnetiques, Gauthier-Villars, Paris (1941).

    MATH  Google Scholar 

  26. J.-E. Losch, Tafeln Hoherer Functionen. Sechste Auflage, B. G. Teurner Verlagsgesellschaft, Stuttgart (1960).

    Google Scholar 

  27. M. Leontovich, Zh. Éksp. Teor. Fiz., 16, 474 (1946).

    MathSciNet  Google Scholar 

  28. G. A. Korn and Th. M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw Hill Book Co. Inc., New York (1961).

    MATH  Google Scholar 

  29. U. Vild, F. Guettler, V. Palm, et al., Opt Spektroskop., 77, 993 (1994).

    Google Scholar 

  30. V. V. Dremov, V. A. Makarenko, S. Y. Shapoval, et al., Nanobiology, 3, 83 (1994).

    Google Scholar 

  31. K. N. El’tsov, V. M. Shevlyuga, V. Yu. Yurov, et al., Phys. Low-Dim. Struct, 9/10, 7 (1996).

    Google Scholar 

  32. T. Ditmire, J. W. Tisch, E. Sprinate, et al., Nature, 386, 54 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Zuev.

Additional information

__________

Translated from Preprint No. 31 of the P. N. Lebedev Physical Institute, Moscow (1998).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuev, V.S., Frantsesson, A.V. Subwavelength Electromagnetic-Field Narrowing. J Russ Laser Res 19, 465–482 (1998). https://doi.org/10.1007/BF03380144

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03380144

Navigation