Large-Scale Synchronization Related to Structures Manifesting Simultaneous EEG Baseline Shifts in the Pre-Movement Period

Abstract

Several current data indicate that intracranial records of the Bereitschaftspotential from some brain loci manifest baseline shifts (EBS) in the early pre-movement period that are separated from the movement components by a distinct plateau. In this context, main purpose of this study was to assess whether structures generating the EBSs that are simultaneously widespread in various structures of the brain will be specifically linked to higher levels of large-scale integration in comparison to structures that were not involved in EBS generation. In this study were included 21 epilepsy surgery candidates (12 men, 9 women; aged from 18 to 49 years), who were measured during self-paced clenching movements of the hand. Brain activities during the task were recorded using intracerebral electrodes and were evaluated in pairs. Eighty two percent of the EBSs started in various distant brain structures at the same time, eighteen percent at different time. Approximately half of the EBSs of the first group started in the prefrontal regions; the second half was obtained from pairs located in parietal and temporal regions. The first, the second, and the third groups exhibited a special degree of activity synchronization. The simultaneous EBS onsets associated synchronization strongly suggests significantly higher functional coupling of these brain areas which is supposed to be a basic mechanism of integration of various areas of the brain participating in cognitive and intentional functions.

References

  1. Andersen, R.A., & Cui, H. (2009). Intention, action planning, and decision making in parietalfrontal circuits. Neuron, 63, 568–583.

    Article  PubMed  Google Scholar 

  2. Ball, T., Schreiber, A., Feige, B., Wagner, M., Lucking, C.H., & Kristeva-Feige, R. (1999). The role of higher-order motor areas in voluntary movement as revealed by high-resolution EEG and fMRI. Neuroimage, 10, 682–694.

    Article  PubMed  Google Scholar 

  3. Bressler, S.L., & Kelso, J.A.S. (2001). Cortical coordination dynamics and cognition. Trends Cogn Sei (Regul Ed) 5, 26–36.

    Article  Google Scholar 

  4. Burnod, Y., Baraduc, P., Battaglia-Mayer, A., Guigon, E., Koechlin, E., Ferraina, S., Lacquaniti, F., & Caminiti, R. (1999). Parieto-frontal coding of reaching: An integrated framework. Experimental Brain Research 129, 325–46.

    Article  PubMed  Google Scholar 

  5. Deiber, M.-P., Passingham, R.E., Colebatch, J.G., Friston, K.J., Nixon, P.D., Frackowiak, R.S.J. (1991). Cortical areas and the selection of movement: a study with positron emission tomography. Experimental Brain Research, 84, 393–402.

    Article  PubMed  Google Scholar 

  6. Deiber, M.-P., Ibanez, V., Sadato, N., & Hallett, M. (1996). Cerebral structures participating in motor preparation in humans: a positron emission tomography study. Journal of Neurophysiology. 75, 233–247.

    PubMed  Google Scholar 

  7. Deiber, M.-P., Honda, M., Ibanez, V., Sadato, N., & Hallett, M. (1999). Mesial motor areas in self-initiated versus externally triggered movements examined with fMRI: effect of movement type and rate. Journal of Neurophysiology, 81, 3065–77.

    PubMed  Google Scholar 

  8. Devanne, H. Lavoie, B.A., & Capaday, C. (1997). Input-output properties and gain changes in the human corticospinal pathway. Experimental Brain Research, 114, 329–338.

    Article  PubMed  Google Scholar 

  9. Dirnberger, G., Durreger, C, Lindinger, G., Lang, W. (2011). On the regularity of preparatory activity preceding movements wit the dominant and nondominant hand: a readiness potential study. International Journal of’Psychophysiology, 81, 127–131.

    Article  Google Scholar 

  10. Fries, P., Reynolds, J.H., Rorie, A.E., & Desimone, R. (2001). Modulation of oscillatory neuronal synchronization by selective visual attention. Science, 291(5508), 1560–3.

    Article  PubMed  Google Scholar 

  11. Haggard, P. (2011). Decision time for free will. Neuron, 69, 404–406.

    Article  PubMed  Google Scholar 

  12. Jahanshahi, M., Jenkins, LH., Brown, R.G., Marsden, CD., Passingham, R.E., & Brooks, D.J. (1995). Self-initiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain, 118, 913–933.

    Article  PubMed  Google Scholar 

  13. Jahanshahi, M., Hallett, M. (2003). The Bereitschaftspotential. Movement-related cortical potentials. Kluwer Academic/ Plenum Publishers, New York.

    Google Scholar 

  14. Jannerod, M. (1994). The representating brain. Neural correlates of motor intention and imagery. Behavioral and Brain Sciences, 17, 187–245.

    Article  Google Scholar 

  15. Jannerod, M. (2006). The origin of voluntary action. History of a physiological concept. C. R. Biologies, 329, 354–362.

    Article  Google Scholar 

  16. Jannerod, M. (2009). Le cerveau volontaire. Odile Jacob, Paris.

    Google Scholar 

  17. Jenkins, LH., Jueptner, M., Passingham, R.E., & Brooks, DJ. (2000). Self-initiated versus externally triggered movements. II. The effect of movement predictability on regional cerebral blood flow. Brain, 123, 1216–28.

    Article  PubMed  Google Scholar 

  18. Jensen, O., Kaiser, J., & Lachaux, J., 2007. Human gamma-frequency oscillations associated with attention and memory. Trends in Neurosciences, 30(7), 317–324.

    Article  PubMed  Google Scholar 

  19. Jonhson, P.B., Ferraina, S., Bianchi, I., & Caminiti, R. (1996). Cortical networks for visual reaching: Physiological and anatomical organization of frontal and parietal lobe arm regions. Cerebral Cortex, 6, 102–119.

    Article  Google Scholar 

  20. Kukleta, M., & Lamarche, M. (2001). Steep early negative slopes can be demonstrated in premovement Bereitschaftspotential. Clinical Neurophysiology, 112, 1642–1649.

    Article  PubMed  Google Scholar 

  21. Kukleta, M., Bob, P., Brazdil, M., Roman, R., & Rektor, I. (2010). The level of frontal-temporal beta-2 band EEG synchronization distinguishes anterior cingulate cortex from other frontal regions. Consciousness and Cognition, 19, 879–886.

    Article  PubMed  Google Scholar 

  22. Kukleta, M., Turak, B., & Louvel, J. (2012). Intracerebral recordings of the Bereitschaftspotential demonstrate the heterogeneity of its components. International Journal of Psychophysiology, 83, 65–70.

    Article  PubMed  Google Scholar 

  23. McKinnon, CD., Capur, S., Hussey, D., Verrier, M.C, Houle, S., Tatton, W.G. (1996). Contribution of the mesial frontal cortex to the premovement potentials associated with intermittent hand movements in humans. Human Brain Mapping, 4, 1–20.

    Article  Google Scholar 

  24. Shibasaki, H., & Hallett, M. (2006). What is the Bereitschaftspotential? Clinical Neurophysiology, 117, 2341–56.

    Article  PubMed  Google Scholar 

  25. Singer, W. (2001). Consciousness and the binding problem. Annals of the New York Academy of Sciences, 929, 123–46.

    Article  PubMed  Google Scholar 

  26. Soon, Ch.S., Brass, M., Heinze, H.J., & Haynes, J.D. (2008). Unconscious determinants of free decisions in the human brain. Nature Neuroscience, 11, 543–545.

    Article  PubMed  Google Scholar 

  27. Talairach, J., Szikla, G., Tournoux, P., Prossalentis, A., Bordas-Ferrer, M., & Covello, L. (1967). Atlas d’Anatomie Stéréotaxique du Télencéphale. Mason, Paris.

    Google Scholar 

  28. Toro, C, Wang, B., Zeffiro, T., Thatcher, R.W., & Hallett, M. (1994). Movement-related cortical potentials: source analysis and PET/MRI correlation. In: Thatcher, R.W., Hallett, M., Zeffiro, T., John, E.R., Huerta, M., editors. Functional Neuroimaging: Technical Foundations. Orlando, FL: Academic Press, pp. 259–267.

    Google Scholar 

  29. Travena, J., & Miller, J. (2002). Cortical movement preparation before and after a conscious decision to move. Consciousness and Cognition, 11, 162–190.

    Article  Google Scholar 

  30. Varela, F., Lachaux, J., Rodrigez, E., & Martinerie, J. (2001). Phase synchronization and largescale integration. Nature Reviews Neuroscience, 2, 229–239.

    Article  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Miloslav Kukleta.

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kukleta, M., Bob, P., Turak, B. et al. Large-Scale Synchronization Related to Structures Manifesting Simultaneous EEG Baseline Shifts in the Pre-Movement Period. Act Nerv Super 57, 101–109 (2015). https://doi.org/10.1007/BF03379942

Download citation

Key words

  • Intracerebral EEG recordings
  • Bereitschaftspotential
  • Voluntary movement