Advertisement

Activitas Nervosa Superior

, Volume 58, Issue 3–4, pp 51–61 | Cite as

The “Hidden Observer” as the Cognitive Unconscious During Hypnosis

  • Noemi Császár
  • Felix Scholkmann
  • Gabor Kapócs
  • Istvan Bókkon
Open Access
Ideas and Perspectives

Abstract

The question of how to define and explain hypnosis is still not completely answered. Most of the theories of hypnosis are based on describing it as an altered state of consciousness; others focus on intrapersonal and interpersonal aspects, sociopsychological, neurocognitive or sociocognitive processes. More detailed explanation of hypnosis requires a synthesis of these various perspectives — a task for future research. Recent experiments are in agreement with Braid’s concept of hypnosis (published already in 1843) defining hypnosis as a process enhancing or depressing neural activity as well as changing functional connectivity among brain regions; the brain regions involved in mental imagery are thought to be central for hypnosis. In the present article we suggest that the “hidden observer” under hypnosis might be due to the cognitive unconscious and that this special state emerges principally in highly susceptible subjects. Explicitly, the “hidden observer” might be nothing other than the cognitive unconscious.

Hypnosis Cognitive unconscious Hidden observer Precuneus Visual areas 

References

  1. Baars, B.J. (1988). A Cognitive Theory of Consciousness (New York: Cambridge University Press).Google Scholar
  2. Baars, B.J. (2005). Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. Progress in Brain Research, 150, 45–53.CrossRefPubMedGoogle Scholar
  3. Barabasz, A., & Perez, N. (2007). Salient findings: hypnotizability as core construct and the clinical utility of hypnosis. International Journal of Clinical and Experimental Hypnosis, 55, 372–9.CrossRefPubMedGoogle Scholar
  4. Beer, A.L., Plank, T., Meyer, G., & Greenlee, M.W. (2013). Combined diffusion-weighted and functional magnetic resonance imaging reveals a temporal-occipital network involved in auditory-visual object processing. Frontiers in Integrative Neuroscience, 7, 5.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bergmann, J., Genç, E., Kohler, A., Singer, W., & Pearson, J. (2016). Neural Anatomy of Primary Visual Cortex Limits Visual Working Memory. Cerebral Cortex, 26, 43–50.CrossRefPubMedGoogle Scholar
  6. Bókkon, I., Vas, J.P., Császár, N., & Lukács, T. (2014). Challenges to free will: transgenerational epigenetic information, unconscious processes and vanishing twin syndrome. Reviews in the Neurosciences, 25, 163–75.CrossRefPubMedGoogle Scholar
  7. Bolognini, N., Convento, S., Fusaro, M., & Vallar, G. (2013). The sound-induced phosphene illusion. Experimental Brain Research, 231, 469–78.CrossRefPubMedGoogle Scholar
  8. Bowers, K.S. (1981). Do the Stanford scales tap the ‘classic suggestion effect’? International Journal of Clinical and Experimental Hypnosis, 29, 42–53.CrossRefPubMedGoogle Scholar
  9. Braid, J. (1843). Neurohypnology, or the rationale of nervous sleep considered in relation with animal magnetism. London, United Kingdom: Churchill.Google Scholar
  10. Bruner, E., Preuss, T.M., Chen, X., & Rilling, J.K. (2016). Evidence for expansion of the precuneus in human evolution. Brain Structure & Function, DOI: 10.1007/s00429-015-1172-yGoogle Scholar
  11. Carpenter, P.A., & Just, M.A. (2000). Working memory and executive function: Evidence from neuroimaging. Current Opinion in Neurobiology, 10, 195–9.CrossRefPubMedGoogle Scholar
  12. Cavanna, A.E., & Trimble, M.R. (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 129, 564–83.CrossRefPubMedGoogle Scholar
  13. Cojan, Y., Waber, L., Carruzzo, A., & Vuilleumier, P. (2009). Motor inhibition in hysterical conversion paralysis. Neuroimage, 47, 1026–37.CrossRefPubMedGoogle Scholar
  14. Creswell, J.D., Bursley, J.K., & Satpute, A.B. (2013). Neural Reactivation Links Unconscious Thought to Decision Making Performance. Social Cognitive and Affective Neuroscience, 8, 863–9.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dehner, L.R., Keniston, L.P., Clemo, H.R., & Meredith, M.A. (2004). Cross-modal circuitry between auditory and somatosensory areas of the cat anterior ectosylvian sulcal cortex: a ‘new’ inhibitory form of multisensory convergence. Cerebral Cortex, 14, 387–403.CrossRefPubMedGoogle Scholar
  16. Del Casale, A., Ferracuti, S., Rapinesi, C., Serata, D., Sani, G., Savoja, V., Kotzalidis, G.D., Tatarelli, R., & Girardi, P. (2012). Neurocognition under hypnosis: findings from recent functional neuroimaging studies. International Journal of Clinical and Experimental Hypnosis, 60, 286–317.CrossRefPubMedGoogle Scholar
  17. Fletcher, P.C., Frith, C.D., Baker, S.C., Shallice, T., Frackowiak, R.S., & Dolan, R.J. (1995). The mind’s eye-Precuneus activation in memory-related imagery. Neuroimage, 2, 195–200.CrossRefPubMedGoogle Scholar
  18. Freton, M., Lemogne, C., Bergouignan, L., Delaveau, P., Lehéricy, S., & Fossati, P. (2014). The eye of the self: precuneus volume and visual perspective during autobiographical memory retrieval. Brain Structure & Function, 219, 959–68.CrossRefGoogle Scholar
  19. Ghazanfar, A.A., & Schroeder, C.E. (2006). Is neocortex essentially multisensory? Trends in Cognitive Sciences, 10, 278–85.CrossRefPubMedGoogle Scholar
  20. Gusnard, D.A., & Raichle, M.E. (2001). Searching for a baseline: functional imaging and the resting human brain. Nature Reviews Neuroscience, 2, 685–94.CrossRefPubMedGoogle Scholar
  21. Halsband, U. (2006). Learning in trance: Functional brain imaging studies and neuropsychology. Journal of Physiology (Paris), 99, 470–82.CrossRefGoogle Scholar
  22. Halsband, U., Mueller, S., Hinterberger, T., & Strickner, S. (2009). Plasticity changes in the brain in hypnosis and meditation. Contemporary Hypnosis, 26, 194–215.CrossRefGoogle Scholar
  23. Harley, C.A., & Bielajew, C.H. (1992). A comparison of glycogen phosphorylase a and cytochrome oxidase histochemical staining in rat brain. Journal of Comparative Neurology, 322, 377–89.CrossRefPubMedGoogle Scholar
  24. Hasegawa, H., & Jamieson, G.A. (2002). Conceptual issues in hypnosis research: explanations defmitions and the state/non-state debate. Contemporary Hypnosis, 19, 103–17.CrossRefGoogle Scholar
  25. Hassin, R.R., Bargh, J.A., Engell, A., & McCulluch, K.C. (2009). Implicit Working Memory. Consciousness and Cognition, 18, 665–78.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hassin, R.R. (2013). Yes It Can: On the Functional Abilities of the Human Unconscious. Perspectives on Psychological Science, 8, 195–207.CrossRefPubMedGoogle Scholar
  27. Herwig, U., Kaffenberger, T., Schell, C., Jancke, L., & Bruhl, A.B. (2012). Neural activity associated with self-reflection. BMC Neuroscience, 13, 52.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Herzog, M.H., Kammer, T., & Scharnowski, F. (2016). Time Slices: What Is the Duration of a Percept? PLOS Biology, 14 (4), e1002433.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hesselmann, G., & Moors, P. (2015). Definitely maybe: can unconscious processes perform the same functions as conscious processes? Frontiers in Psychology, 6, 584.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hilgard, E.., Hilgard, J.R., Macdonald, H., Morgan, A.H. & Johnson, L.S. (1978). Covert pain in hypnotic analgesia: Its reality as tested by the real-simulator design. Journal of Abnormal Psychology, 84, 280–9.CrossRefGoogle Scholar
  31. Hilgard, E.R. (1973). A neodissociation interpretation of pain reduction in hypnosis. Psychological Review, 80, 396–411.CrossRefPubMedGoogle Scholar
  32. Hilgard, E.R. (1977). Divided Consciousness: Multiple controls in human thought and action. New York, NY: Wiley.Google Scholar
  33. Horga, G., & Maia, T.V. (2012). Conscious and unconscious processes in cognitive control: a theoretical perspective and a novel empirical approach. Frontiers in Human Neuroscience, 6, 199.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Huang, Y.F., Soon, C.S., Mullette-Gillman, O.A., & Hsieh, P.J. (2014). Pre-existing brain states predict risky choices. Neuroimage, 101, 466–72.CrossRefPubMedGoogle Scholar
  35. Huang, Y.F., Tan, E.G., Soon, C.S., & Hsieh, P.J. (2014). Unconscious cues bias first saccades in a freesaccade task. Consciousness and Cognition, 29, 48–55.CrossRefPubMedGoogle Scholar
  36. Iurilli, G., Ghezzi, D., Olcese, U., Lassi, G., Nazzaro, C., Tonini, R., Tucci, V., Benfenati, F., & Medini, P. (2012). Sound-driven synaptic inhibition in primary visual cortex. Neuron, 73, 814–28.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jiang, H., White, M.P., Greicius, M.D., Waelde, L.C., & Spiegel, D. (2016). Brain Activity and Functional Connectivity Associated with Hypnosis. Cerebral Cortex, doi: 10.1093/cercor/bhw220.Google Scholar
  38. Kallio, S., & Revonsuo, A. (2003). Hypnotic phenomena and altered states of consciousness: A multilevel framework of description and explanation. Contemporary Hypnosis, 20, 111–64.CrossRefGoogle Scholar
  39. Kihlstrom, J.F. (1987). The cognitive unconscious. Science, 237, 1445–52.CrossRefPubMedGoogle Scholar
  40. Kjaer, T.W., Nowak, M., & Lou, H.C. (2002). Reflective self-awareness and conscious states: PET evidence for a common midline parietofrontal core. Neuroimage, 17, 1080–6.CrossRefPubMedGoogle Scholar
  41. Kjaer, T.W., Nowak, M., Kjaer, K.W., Lou, A.R., & Lou, H.C. (2001). Precuneus-prefrontal activity during awareness of visual verbal stimuli. Consciousness and Cognition, 10, 356–65.CrossRefPubMedGoogle Scholar
  42. Kosslyn, S.M., Thompson, W.L., Costantini-Ferrando, M.F., Alpert, N.M., & Spiegel, D. (2000). Hypnotic visual illusion alters color processing in the brain. American Journal of Psychiatry, 157, 1279–84.CrossRefPubMedGoogle Scholar
  43. Lacey, S., & Sathian K. (2014). Visuo-haptic multisensory object recognition, categorization, and representation. Frontiers in Psychology, 5, 730.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Laurence, J-R., & Perry, C. (1981). The “hidden observer” phenomenon in hypnosis: Some additional findings. Journal of Abnormal Psychology, 90, 334–44.CrossRefPubMedGoogle Scholar
  45. Lessell, S., & Cohen, M.M. (1979). Phosphenes induced by sound. Neurology. 29, 1524–6.CrossRefPubMedGoogle Scholar
  46. Libet, B., Gleason, C.A., Wright, E.W., & Pearl, D.K. (1983). Time of conscious intention to act in relation to onset of cerebral activities (readiness-potential): the unconscious initiation of a freely voluntary act. Brain, 106, 623–42.CrossRefPubMedGoogle Scholar
  47. Lou, H.C., Luber, B., Crupain, M., Keenan, J.P., Nowak, M., Kjaer, T.W., Sackeim, H.A., & Lisanby, S.H. (2004). Parietal cortex and representation of the mental Self. Proceedings of the National Academy of Sciences of the United States of America. 101, 6827–32.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Menon, V., & Uddin, L.Q. (2010). Saliency, switching, attention and control: a network model of insula function. Brain Structure & Function, 214, 655–67.CrossRefGoogle Scholar
  49. Muckli, L. (2010). What are we missing here? Brain imaging evidence for higher cognitive functions in primary visual cortex V1. International Journal of Imaging Systems and Technology, 20, 131–9.CrossRefGoogle Scholar
  50. Murray, M.M., Thelen, A., Thut, G., Romei, V., Martuzzi, R., & Matusz, P.J. (2016). The multisensory function of the human primary visual cortex. Neuropsychologia, 83, 161–9.CrossRefPubMedGoogle Scholar
  51. Nauhaus, I., Nielsen, K.J., & Callaway, E. (2016). Efficient Receptive Field Tiling in Primate V1. Neuron, doi: 10.1016/j.neuron.2016.07.015.Google Scholar
  52. Nogrady, H., McConkey, K.M., Laurence J.R., & Perry, C. (1983). Dissociation duality and demand characteristics in hypnosis. Journal of Abnormal Psychology, 92, 223–35.CrossRefPubMedGoogle Scholar
  53. Pekala, R.J. (2015). The “mystery of hypnosis”; helping us better understand hypnosis and empathic involvement theory (EIR). American Journal of Clinical Hypnosis, 58, 274–85.CrossRefGoogle Scholar
  54. Perry, C., & Laurence, J-R. (1980). Hypnotic depth and hypnotic susceptibility: A replicated finding. International Journal of Clinical and Experimental Hypnosis, 28, 272–80.CrossRefPubMedGoogle Scholar
  55. Petro, L.S., Vizioli, L., & Muckli, L. (2014). Contributions of cortical feedback to sensory processing in primary visual cortex. Frontiers in Psychology, 5, 1223.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Rainville, P., Hofbauer, R.K., Bushnell, M.C., Duncan, G.H., & Price, D.D. (2002). Hypnosis modulates activity in brain structures involved inthe regulation of consciousness. Journal of Cognitive Neuroscience, 14, 887–901.CrossRefPubMedGoogle Scholar
  57. Roder, C.H., Michal, M., Overbeck, G., van de Ven, V.G., & Linden, D.E. (2007). Pain response in depersonalization: a functional imaging study using hypnosis in healthy subjects. Psychotherapy and Psychosomatics, 76, 115–21.CrossRefPubMedGoogle Scholar
  58. Rolls, E.T. & Deco, G. (2011). Prediction of decisions from noise in the brain before the evidence is provided. Frontiers in Neuroscience, 5, 33.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Rothmayr, C., Baumann, O., Endestad, T., Rutschmann, R.M., Magnussen, S., & Greenlee, M.W. (2007). Dissociation of neural correlates of verbal and non-verbal visual working memory with different delays. Behavioral and Brain Functions, 3, 56.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Sadato, N. (2006). Cross-modal plasticity in the blind revealed by functional neuroimaging. Supplements to Clinical Neurophysiology, 59, 75–9.CrossRefPubMedGoogle Scholar
  61. Snow, J.C, Strother, L., & Humphreys, G.W. (2014). Haptic shape processing in visual cortex. Journal of Cognitive Neuroscience, 26, 1154–67.CrossRefPubMedGoogle Scholar
  62. Soon, C.S., Brass, M., Heinze, H.J., & Haynes, J.D. (2008). Unconscious determinants of free decisions in the humanbrain. Nature Neuroscience, 11, 543–5.CrossRefPubMedGoogle Scholar
  63. Soon, C.S., He, A.H., Bode, S., & Haynes, J.D. (2013). Predicting free choices for abstract intentions. Proceedings of the National Academy of Sciences of the United States of America, USA 110, 6217–22.CrossRefGoogle Scholar
  64. Spanos, N.P., & Barber, T.X. (1972). Cognitive activity during ‘hypnotic’ suggestibility: goal-directed fantasy and the experience of nonvolition. Journal of Personality, 40, 510–24.CrossRefPubMedGoogle Scholar
  65. Spiegel, D., & Kosslyn, S. (2004). Glauben ist Sehen: Die Neurophysiologie der Hypnose. Hypnose und Kognition, 21, 119–36.Google Scholar
  66. Stevens, F.L., Hurley, R.A., & Taber, K.H. (2011). Anterior cingulate cortex: unique role in cognition and emotion. Journal of Neuropsychiatry and Clinical Neurosciences, 23, 121–5.CrossRefPubMedGoogle Scholar
  67. Tambiev, A.E. & Medvedev, S.D. (2005). The Dynamics of the Spatial Synchronization of Brain Biopotentials in Conditions of Intense Attention in the Hypnotic State. Neuroscience and Behavioral Physiology, 35, 643–7.CrossRefPubMedGoogle Scholar
  68. Utevsky, A.V., Smith, D.V., & Huettel, S.A. (2014). Precuneus is a functional core of the default-mode network. Journal of Neuroscience, 34, 932–40.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Van Essen, D.C. (2004). Organization of visual areas in macaque and human cerebral cortex. In L. M. Chalupa & J. S. Werner (Eds.), The visual neurosciences (Vol. 1, pp. 507–521). Cambridge, MA: MITGoogle Scholar
  70. Van Essen, D.C., & Drury, H.A. (1997). Structural and functional analyses of human cerebral cortex using a surface-based atlas. Journal of Neuroscience, 17, 7079–102.PubMedGoogle Scholar
  71. van Gaal, S., & Lamme, V.A. (2012). Unconscious high-level information processing: implication for neurobiological theories of consciousness. Neuroscientist, 18, 287–301.CrossRefPubMedGoogle Scholar
  72. van Gaal, S., Ridderinkhof, K.R., Fahrenfort, J.J., Scholte, H.S., & Lamme, V.A. (2008). Frontal cortex mediates unconsciously triggered inhibitory control. Journal of Neuroscience, 28, 8053–62.CrossRefPubMedGoogle Scholar
  73. Vetter, P., Smith, F.W., & Muckli, L. (2014). Decoding Sound and Imagery Content in Early Visual Cortex. Current Biology, 2, 1256–62.CrossRefGoogle Scholar
  74. Vogeley, K., May, M., Ritzl, A., Falkai, P., Zilles, K., & Fink, G.R. (2004). Neural correlates of first-person perspective as one constituent of human self-consciousness. Journal of Cognitive Neuroscience, 16, 817–27CrossRefPubMedGoogle Scholar
  75. Vogt, B.A., & Laureys, S. (2005). Posterior cingulate, precuneal and retrosplenial cortices: cytology and components of the neural network correlates of consciousness. Progress in Brain Research, 150, 205–17.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Wickramasekera II, I.E. (2001). Could empathy be a predictor of hypnotic ability: The empathic involvement hypothesis (Unpublished doctoral dissertation). Illinois School of Professional Psychology, Chicago, IL.Google Scholar
  77. Wickramasekera II, I.E. (2015). Mysteries of hypnosis and the self are revealed by the psychology and neuroscience of empathy. American Journal of Clinical Hypnosis, 57, 330–48.CrossRefPubMedGoogle Scholar
  78. Wickramasekera II, I.E., & Szlyk, J. (2003). Could empathy be a predictor of hypnotic ability? International Journal of Clinical and Experimental Hypnosis, 51, 390–9.CrossRefPubMedGoogle Scholar
  79. Yapko, M.D. (2003). Trancework: an introduction to the practice of clinical hypnosis. 3rd ed. New York: Brunner-Routledge.Google Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  • Noemi Császár
    • 1
    • 2
  • Felix Scholkmann
    • 3
  • Gabor Kapócs
    • 4
    • 5
  • Istvan Bókkon
    • 2
    • 6
  1. 1.Gaspar Karoly University Psychological InstituteBudapestHungary
  2. 2.Psychoszomatic OutPatient DepartmentBudapestHungary
  3. 3.Research Office for Complex Physical and Biological Systems (ROCoS)ZurichSwitzerland
  4. 4.Social Home for Psychiatric PatientsSzentgotthárdHungary
  5. 5.Institute of Behavioral SciencesSemmelweis UniversityBudapestHungary
  6. 6.Vision Research InstituteNeuroscience and Consciousness Research DepartmentLowellUSA

Personalised recommendations