Theoretical Implications on Visual (Color) Representation and Cytochrome Oxidase Blobs

Abstract

The rich concentration of mitochondrial cytochrome oxidase (CO) blobs in the V1 (striate) primate visual cortex has never been explained. Although the distribution of CO blobs provided a persuasive example of columnar structure in the V1, there are contradictions about the existence of hypercolumns. Since photoreceptors and other retinal cells process and convey basically external visible photonic signals, it suggests that one of the most important tasks of early visual areas is to represent these external visible color photonic signals during visual perception. This representation may occur essentially in CO-rich blobs of the V1. Here we suggest that the representation of external visible photon signals (i.e. visual representation) can be the most energetic allocation process in the brain, which is reasonably performed by the highest density neuron al V1 areas and mitochondrial-rich cytochrome oxidases. It is also raised that the functional unit for phosphene induction can be linked to small clusters of Co —rich blobs in V1. We present some implications about distinction between the physics of visible photons/ light and its subjective experiences. We also discuss that amodal and modal visual completions are possible due to the visual perception induced visualization when the brain tries to interpret the unseen parts of objects or represent features of perceived objects that are not actually visible. It is raised that continuously produced intrinsic bioluminescent photons from retinal lipid peroxidation may have functional role in initial development of retinogeniculate pathways as well as initial appearance topographic organizations of V1 before birth. Finally, the metaphysical framework is the extended version of dual-aspect monism (DAMv) that has the least number of problems compared to all other frameworks and hence it is better than the materialism that is currently dominant in science.

References

  1. ‘t Hooft, G. ed. (2005). Fifty years of Yang-Mills theory. World Scientific Publishing Co. Pte. Ltd., Singapore.

    Google Scholar 

  2. Adam, W., Kazakov, D.V., & Kazakov, V.P. (2005). Singlet-oxygen chemiluminescence in peroxide reactions. Chemical Reviews. 105, 3371–87.

    PubMed  Article  Google Scholar 

  3. Adams, D.L., Sincich, L.C., & Horton, J.C. (2007). Complete pattern of ocular dominance columns in human primary visual cortex. Journal of Neuroscience. 27, 10391–403.

    PubMed  Article  Google Scholar 

  4. Ahissar, M., & Hochstein, S. (1997). Task difficulty and the specificity of perceptual learning. Nature. 387, 401–6.

    PubMed  Article  Google Scholar 

  5. Albert, M.K. (2007). Mechanisms of modal and amodal interpolation. Psychological Review. 114, 455–69.

    PubMed  Article  Google Scholar 

  6. Bartels, A., & Zeki, S. (1998). The theory of multistage integration in the visual brain. Proceeding. Biological Sciences / The Roy al Society. 265, 2327–32.

    Article  Google Scholar 

  7. Bartels, A., & Zeki, S. (2000). The architecture of the colour centre in the human visual brain: new results and a review. European Journal of Neuroscience. 12, 172–93.

    PubMed  Article  Google Scholar 

  8. Basole, A., Kreft-Kerekes, V., White, L.E., & Fitzpatrick, D. (2006). Cortical cartography revisited: A frequency perspective on the functional architecture of visual cortex. Progress in Brain Research. 154: 121–34.

  9. Basole, A., White, L.E., & Fitzpatrick, D. (2003). Mapping multiple features in the population response of visual cortex. Nature. 423, 986–90.

    PubMed  Article  Google Scholar 

  10. Bohm, D. (1990). A new theory of the relationship of mind and matter. Philosophical Psychology. 3, 271–86.

    Article  Google Scholar 

  11. Bókkon, I. (2008). Phosphene phenomenon: a new concept. BioSystems. 92, 168–74.

    PubMed  Article  Google Scholar 

  12. Bókkon, I., & Vimal, R.L.P. (2009). Retinal phosphenes and discrete dark noises in rods: a new biophysical framework. Journal of Photochemistry and Photobiology B: Biology. 96, 255–9.

    Article  Google Scholar 

  13. Bókkon, I., & Vimal, R.L.P. (2010). Implications on visual apperception: energy, duration, structure and synchronization. BioSystems. 101, 1–9.

    PubMed  Article  Google Scholar 

  14. Bókkon, I., Vimal, R.L.P., Wang, C, Dai, J, Salari, V., Grass, F., & Antal, I. (2011). Visible light induced ocular delayed bioluminescence as a possible origin of negative afterimage. Journal of photochemistry and photobiology. B, Biology. 103, 192–9.

    PubMed  Article  Google Scholar 

  15. Boring, E.G., & Gardner, L. eds. (1967). A history of psychology in autobiography. The Century Psychology Series. 5, 449–75. Connecticut: Appleton-Century-Crofts.

    Google Scholar 

  16. Borst, G., & Kosslyn, S.M. (2008). Visual mental imagery and visual perception: structural equivalence revealed by scanning processes. Memory & Cognition. 36, 849–62.

    Article  Google Scholar 

  17. Boyer, J.L., & Harrison, S., Ro, T. (2005). Unconscious processing of orientation and color without primary visual cortex. Proceedings of the National Academy of Sciences of the United States of America. 102, 16875–9.

    PubMed  PubMed Central  Article  Google Scholar 

  18. Brindley, G.S., & Lewin, W.S. (1968). The sensations produced by electrical stimulation of the visual cortex. Journal of Physiology. 196, 479–93.

    PubMed  PubMed Central  Article  Google Scholar 

  19. Briscoe, RE. (2011). Mental Imagery and the Varieties of Amodal Perception. Pacific Philosophical Quarterly. 92, 153–73.

    Article  Google Scholar 

  20. Brown, P.K., & Wald, G. (1964). Visual Pigments in Single Rods and Cones of the Human Retina. Science. 144, 45–52.

    PubMed  Article  Google Scholar 

  21. Bruzzo, A.A., & Vimal, R.L.P. (2007). Self: An adaptive pressure arising from self-organization, chaotic dynamics, and neural Darwinism. Journal of Integrative Neuroscience. 6, 541–66.

    PubMed  Article  Google Scholar 

  22. Calvert, G.A., Spence. C, & Stein. E.B. (2004). The Handbook of Multisensory Processes. MIT Press, Cambridge.

    Google Scholar 

  23. Cao, D., Pokorny, J., Smith, V.C., & Zele, A.J. (2008). Rod contributions to color perception: linear with rod contrast. Vision Research. 48, 2586–92.

    PubMed  PubMed Central  Article  Google Scholar 

  24. Carder, R.K. (1997). Immunocytochemical characterization of AMPA-selective glutamate receptor subunits: laminar and compartmental distribution in macaque striate cortex. Journal of Neuroscience. 17, 3352–63.

    PubMed  Google Scholar 

  25. Carder, R.K., & Hendry, S.H. (1994). Neuronal characterization, compartmental distribution, and activity-dependent regulation of glutamate immunoreactivity in adult monkey striate cortex. Journal of Neuroscience. 14, 242–62.

    PubMed  Google Scholar 

  26. Catalá, A. (2006). An overview of lipid peroxidation with emphasis in outer segments of photoreceptors and the chemiluminescence assay. International Journal of Biochemistry & Cell Biology. 38, 1482–95.

    Article  Google Scholar 

  27. Cattaneo, Z., Bona, S., & Silvanto, J. (2012). Cross-adaptation combined with TMS reveals a functional overlap between vision and imagery in the early visual cortex. NeuroImage. 59, 3015–20.

    PubMed  Article  Google Scholar 

  28. Cavusoglu, M., Bartels, A., Yesilyurt, B., Uludag, K. (2012). Retinotopic maps and hemodynamic delays in the human visual cortex measured using arterial spin labeling. Neuroimage. 59, 4044–54.

    PubMed  Article  Google Scholar 

  29. Chalupa, L,M. (2009). Retinal waves are unlikely to instruct the formation of eye-specific retinogeniculate projections. Neural Development. 4, 25.

    PubMed  PubMed Central  Article  Google Scholar 

  30. Chen, W,. Kato, T., Zhu, X.H., Ogawa, S., Tank, D.W., & Ugurbil, K. (1998). Human primary visual cortex and lateral geniculate nucleus activation during visual imagery. Neuroreport. 9, 3669–74.

    PubMed  Article  Google Scholar 

  31. Cichy, R.M., Heinzle, J., & Haynes, J.D. (2012). Imagery and perception share cortical representations of content and location. Cerebral Cortex. 22, 372–80.

    PubMed  Article  Google Scholar 

  32. Cowey, A., & Walsh, V. (2000). Magnetically induced phosphenes in sighted, blind and blindsighted observers. Neuroreport. 51, 3269–73.

    Article  Google Scholar 

  33. De Valois, R.L., & Jacobs, G.H. (1984). Neural mechanisms of color vision (Chapter 10). In Darian-Smith I. ed. Handbook of physiology: The Nervous System. Williams and Wilkins, Baltimore, 425–45.

    Google Scholar 

  34. Dennett, D.C. (2003). Who’s on first? Heterophenomenology explained. Journal of Consciousness Studies. 50, 10–30.

    Google Scholar 

  35. Economides, JR., Sincich, L.C., Adams, D.L., & Horton, JC. (2011). Orientation tuning of cytochrome oxidase patches in macaque primary visual cortex. Nature Neuroscience. 54, 1574–80.

    Article  Google Scholar 

  36. Engel, S., Zhang, X., & Wandell, B. (1997). Colour tuning in human visual cortex measured with functional magnetic resonance imaging. Nature. 388, 68–71.

    PubMed  Article  Google Scholar 

  37. Farah, M.J, Hammond, K.M., Levine, D.N., & Calvanio, R. (1988). Visual and spatial mental imagery: dissociable systems of representation. Cognitive Psychology. 20, 439–62.

    PubMed  Article  Google Scholar 

  38. Fendrich, R., Wessinger, CM., & Gazzaniga, M.S. (1992). Residual vision in a scotoma: implications for blindsight. Science. 258, 1489–91.

    PubMed  Article  Google Scholar 

  39. Ffytche, D.H., & Zeki, S. (2011). The primary visual cortex, and feedback to it, are not necessary for conscious vision. Brain. 534(Pt 1): 247–57.

    Article  Google Scholar 

  40. Fried, P.J, Elkin-Frankston, S., Rushmore, R.J, Hilgetag, C.C., & Valero-Cabre, A. (2011). Characterization of visual percepts evoked by noninvasive stimulation of the human posterior parietal cortex. PLoS One. 6, e27204.

    PubMed  PubMed Central  Article  Google Scholar 

  41. Ganis, G., Thompson, W.L., Mast, F.W., & Kosslyn, S.M. (2003). Visual imagery in cerebral visual dysfunction. Neurologic Clinics. 21, 631–46.

    PubMed  Article  Google Scholar 

  42. Giard, M.H., & Peronnet, F. (1999). Auditory-visual integration during multimodal object recognition in humans: a behavioral and electrophysiological study. Journal of Cognitive Neuroscience. 51, 473–90.

    Article  Google Scholar 

  43. Girard, P., Hupé, J.M., & Bullier, J. (2001). Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. Journal of Neurophysiology. 85, 1328–31.

    PubMed  Google Scholar 

  44. Golomb, J.D., & Kanwisher, N. (2011). Higher Level Visual Cortex Represents Retinotopic, Not Spatiotopic, Object Location. Cerebral Cortex. 22, 2794–810.

    PubMed  PubMed Central  Article  Google Scholar 

  45. Hadjikhani, N., Liu, A.K., Dale, A.M., Cavanagh, P., & Tootell, R.B. (1998). Retinotopy and color sensitivity in human visual cortical area V8. Nature Neuroscience. 1, 235–254.

    PubMed  Article  Google Scholar 

  46. Hering, E. (1874). Zur Lehre vom Lichtsinn. IV. Über die sogenannte Intensitat der Lichtempfindung und uber die Empfindung des Schwarzen. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien. Mathematisch-naturwissenschaftliche Classe. Abth. III 69, 85–104.

    Google Scholar 

  47. Hiley, B.J., & Pylkkänen, P. (2005). Can Mind Affect Matter Via Active Information? Mind and Matter. 3, 7–27.

    Google Scholar 

  48. Hochstein, S., & Ahissar, M. (2002). View from the top: hierarchies and reverse hierarchies in the visual system. Neuron. 36, 791–804.

    PubMed  Article  Google Scholar 

  49. Hochstein, S., Barlasov, A., Hershler, O., Nitzan, A., & Shneor, S. (2004). Rapid vision is holistic. Journal of Vision. 4, 95.

    Article  Google Scholar 

  50. Horton, J.C., & Adams, D.L. (2005). The cortical column: a structure without a function. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 360, 837–62.

    PubMed  PubMed Central  Article  Google Scholar 

  51. Hubel, D.H., & Wiesel, T.N. (1962). Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. Journal of Physiology. (Lond) 160, 106–154.

    PubMed  PubMed Central  Article  Google Scholar 

  52. Hubel, D.H., & Wiesel, T.N. (1974). Sequence regularity and geometry of orientation columns in the monkey striate cortex. Journal of Comparative Neurology. 558, 267–94.

    Article  Google Scholar 

  53. Hubel, D.H., & Wiesel, T.N. (1977). Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society B: Biological Sciences. 598, 1–59.

    Article  Google Scholar 

  54. Huberman, A.D., Feller, M.B., & Chapman, B. (2008). Mechanisms Underlying Development of Visual Maps and Receptive Fields. Annual Review of Neuroscience. 31, 479–550.

    PubMed  PubMed Central  Article  Google Scholar 

  55. Hunt, D.M., Carvalho, L.S., Cowing, J.A., & Davies, W.L. (2009). Evolution and spectral tuning of visual pigments in birds and mammals. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 364, 2941–55.

    PubMed  PubMed Central  Article  Google Scholar 

  56. HurvichL.M.&JamesonD.1957.Apponent-processtheoryofcolorvision.PsychologicalReview.64 Part16, 384–404

  57. Kaiser, P.K., & Boynton, R.M. (1996). Human Color Vision. (2nd ed.), Optical Society of America, Washington, D.C.

    Google Scholar 

  58. Kammer, T. (1999). Phosphenes and transient scotomas induced by magnetic stimulation of the occipital lobe: their topographic relationship. Neuropsychologia. 37, 191–8.

    PubMed  Article  Google Scholar 

  59. Kanizsa, G., & Gerbino, W. (1982). “Amodal completion: Seeing or thinking?” In Beck J, ed. Organisationand Representation in Perception. Lawrence Erlbaum Associates, Hillsdale, New Jersey.

  60. Kataoka, Y., Cui Y., Yamagata, A., Niigaki, M., Hirohata, T., Oishi, N., & Watanabe, Y (2001). Activity -dependent neural tissue oxidation emits intrinsic ultraweak Photons. Biochemical and Biophysical Research Communications. 285, 1007–11.

    PubMed  Article  Google Scholar 

  61. Kennedy, H., Dehay, C, & Horsburgh, G. (1990). Striate cortex periodicity. Nature. 348, 494.

    PubMed  Article  Google Scholar 

  62. Klein, I., Dubois, J, Mangin, J.F., Kherif, F., Flandin, G., Poline, J.B., Denis, M., Kosslyn, S.M., & Le Bihan, D. (2004). Retinotopic organization of visual mental images as revealed by functional magnetic resonance imaging. Brain Research. Cognitive Brain Research. 22, 26–31.

    PubMed  Article  Google Scholar 

  63. Kobayashi, M., Takeda, M., Sato, T., Yamazaki, Y, Kaneko, K., Ito, K., Kato, H., & Inaba, H. (1999). In vivo imaging of spontaneous ultraweak photon emission from a rat’s brain correlated with cerebral energy metabolism and oxidative stress. Neuroscience Research. 34, 103–13.

    PubMed  Article  Google Scholar 

  64. Koch, C. (2012). Consciousness: Confessions of a Romantic Reductionist. MIT Press, Cambridge.

    Google Scholar 

  65. Koivisto, M., & Silvanto, J. (2012). Visual feature binding: the critical time windows of V1/V2 and parietal activity. Neuroimage 59, 1608–14.

    PubMed  Article  Google Scholar 

  66. Koivisto, M., Mäntylä, T., & Silvanto, J. (2010). The role of early visual cortex (V1/ V2) in conscious and unconscious visual perception. Neuroimage. 51, 828–34.

    PubMed  Article  Google Scholar 

  67. Kosslyn, S.M. (1994). Image and brain: The resolution of the imagery debate. MIT Press, Cambridge.

    Google Scholar 

  68. Krauskopf, J, Williams, D.R., & Heeley, D.W. (1982). Cardinal directions of color space. Vision Research. 22, 1123–31.

    PubMed  Article  Google Scholar 

  69. Kuljis, R.O., & Rakic, P. (1990). Hypercolumns in primate visual cortex can develop in the absence of cues from photoreceptors. Proceedings of the National Academy of Sciences of the United States of America. 87, 5303–6.

    PubMed  PubMed Central  Article  Google Scholar 

  70. Levin, J. (2006). What is a Phenomenal Concept? In Alter T, Walter S. eds. Phenomenal Concepts and Phenomenal Knowledge New essays on Consciousness and Physicalism. Oxford University Press, Oxford, 87–110.

    Google Scholar 

  71. Levin, J. (2008). Taking Type-B Materialism Seriously. Mind & Language. 23, 402–25.

    Article  Google Scholar 

  72. Levine, J. (1983). Materialism and qualia: The explanatory gap. Pacific Philosophical Quarterly. 64, 354–61.

    Google Scholar 

  73. Loar, B. (1990). Phenomenal states. Philosophical Perspectives. 4, 81–108.

    Article  Google Scholar 

  74. Loar, B. (1997). Phenomenal states. Revised edition. In Block N, Flanagan O, Güzeldere G. eds. The Nature of Consciousness. MIT Press, Cambridge

    Google Scholar 

  75. Lu, H.D., & Roe, A.W. (2008). Functional organization of color domains in V1 and V2 of macaque monkey revealed by optical imaging. Cerebral Cortex. 18, 516–33.

    PubMed  Article  Google Scholar 

  76. Lund, J.S., Angelucci, A., & Bressloff, P.C. (2003). Anatomical substrates for functional columns in macaque monkey primary visual cortex. Cerebral Cortex. 13, 15–24.

    PubMed  Article  Google Scholar 

  77. Macaluso, E., Frith, CD., & Driver, J. (2000). Modulation of human visual cortex by crossmodal spatial attention. Science. 289, 1206–8.

    PubMed  Article  Google Scholar 

  78. Marg, E., & Rudiak, D. (1994). Phosphenes induced by magnetic stimulation over the occipital brain: description and probable site of stimulation. Optometry and Vision Science. 71, 301–11.

    PubMed  Article  Google Scholar 

  79. Merabet, L.B., Theoret, H., & Pascual-Leone, A. (2003). Transcranial magnetic stimulation as an investigative tool in the study of visual function. Optometry and Vision Science. 80, 356–68.

    PubMed  Article  Google Scholar 

  80. Metha, A.B., & Mullen, K.T. (1996). Temporal mechanisms underlying flicker detection and identification for red-green and achromatic stimuli. Journal of the Optical Society of America A: Optics, Image Science, and Vision. 13, 1969–80.

    PubMed  Article  Google Scholar 

  81. Metha, A.B., & Mullen, K.T. (1997). Red-Green and achromatic temporal filters: a ratio model predicts contrast-dependent speed perception. Journal of the Optical Society of America A: Optics, Image Science, and Vision. 14, 984–96.

    PubMed  Article  Google Scholar 

  82. Mountcastle, V.B. (1957). Modality and topographic properties of single neurons of cat’s somatic sensory cortex. Journal of Neurophysiology. 20, 408–34.

    PubMed  Google Scholar 

  83. Murphy, K.M., Duffy, K.R., Jones, D.G., & Mitchell, D.E. (2001). Development of cytochrome oxidase blobs in visual cortex of normal and visually deprived cats. Cerebral Cortex. 11, 122–35.

    PubMed  Article  Google Scholar 

  84. Murphy, K.M., Jones, D.G., Fenstemaker, S.B., Pegado, V.D., Kiorpes, L., & Movshon, JA. (1998). Spacing of cytochrome oxidase blobs in visual cortex of normal and strabismic monkeys. Cerebral Cortex. 8, 237–44.

    PubMed  Article  Google Scholar 

  85. Murray, M.M., Foxe, D.M., Javitt, D.C., & Foxe, J.J. (2004). Setting boundaries: brain dynamics of modal and amodal illusory shape completion in humans. Journal of Neuroscience. 24, 6898–903.

    PubMed  Article  Google Scholar 

  86. Murray, M.M., Wylie, G.R., Higgins, B.A., Javitt, D.C., Schroeder, C.E., & Foxe, J.J. (2002). The spatiotemporal dynamics of illusory contour processing: combined high-density electrical mapping, source analysis, and functional magnetic resonance imaging. Journal of Neuroscience. 22, 5055–73.

    PubMed  Google Scholar 

  87. Nakagama, H., & Tanaka, S. (2004). Self-organization model of cytochrome oxidase blobs and ocular dominance columns in the primary visual cortex. Cerebral Cortex. 14, 376–86.

    PubMed  Article  Google Scholar 

  88. Nakano, M. (2005). Low-level chemiluminescence during lipid peroxidations and enzymatic reactions. Journal of Bioluminescence and Chemiluminescence. 4, 231–40.

    Article  Google Scholar 

  89. Nanay, B. (2007). Four theories of amodal perception. In McNamara DS, Trafton JG. eds. Proceedings of the 29th Annual Conference of the Cognitive Science Society (CogSci 2007). Hillsdale, NJ: Lawrence Erlbaum, 2007,. 1331–6. http://csjarchive.cogsci.rpi.edu/proceedings/2007/docs/p1331.pdf

    Google Scholar 

  90. Narici, L., De Martino, A., Brunetti, V., Rinaldi, A., Sannita, W.G., & Paci, M. (2009). Radicals excess in the retina: A model for light flashes in space. Radiation Measurements. 44, 203–5.

    Article  Google Scholar 

  91. Narici, L., Paci, M., Brunetti, V., Rinaldi, A., Sannita, W.G., & De Martino, A. (2012). Bovine rod rhodopsin. Bleaching by luminescence in vitro by recombination of radicals from polyunsaturated fatty acids. Free Radical Biology & Medicine. 53, 482–7.

    Article  Google Scholar 

  92. Neitz, J, Geist, T., & Jacobs, G.H. (1989). Color vision in the dog. Visual neuroscience. 3, 119–25.

    PubMed  Article  Google Scholar 

  93. Nielsen, J.C., Maude, M.B., Hughes, H. (1986). Anderson R.E. Rabbit photoreceptor outer segments contain high levels of docosapentaenoic acid. Investigative Ophthalmology & Visual Science. 27, 261–4.

    Google Scholar 

  94. O’Kusky, J, & Colonnier, M. (1982). A laminar analysis of the number of neurons, glia, and synapses in the visual cortex (area 17) of adult macaque monkeys. Journal of Comparative Neurololy. 210, 278–90.

    Article  Google Scholar 

  95. Papineau, D. (2006). Phenomenal and Perceptual Concepts. In Alter T, Walter S. eds. Phenomenal Concepts and Phenomenal Knowledge New Essays on Consciousness and Physicalism. Oxford University Press, Oxford, 111–44.

    Google Scholar 

  96. Pereira Jr A. (2012). Triple-Aspect Monism: A conceptual framework for the science of human consciousness. In Pereira Jr, Lehmann D. eds. The Unity of Brain, Mind and World: Current perspectives on a science of consciousness. Cambridge University Press, Cambridge, Forthcoming.

    Google Scholar 

  97. Powell, T.P.S., & Mouncastle, V.B. (1959). Some aspects of the functional organisation of the postcentral gyrus of the monkey: a correlation of findings obtained in a single unit analysis with cytoarchitecture. Bulletin of the Johns Hopkins Hospital. 105, 133–62.

    PubMed  Google Scholar 

  98. Preuss, T.M., & Kaas, J.H. (1996). Cytochrome oxidase ‘blobs’ and other characteristics of primary visual cortex in a lemuroid primate, Cheirogaleus medius. Brain, Behavior and Evolution. 47, 103–12.

    PubMed  Article  Google Scholar 

  99. Ptito, A., & Leh, S.E. (2007). Neural substrates of blindsight after hemispherectomy. Neuroscientist. 13, 506–18.

    PubMed  Article  Google Scholar 

  100. Rockel, A.J., Hoirns, R.W., & Powell, T.P.S. (1980). The basic uniformity of structure of the neocortex. Brain. 103, 221–44.

    PubMed  Article  Google Scholar 

  101. Rockland, K.S. (1997). Elements of cortical architecture: hierarchy revisited. In Rockland KS, Kaas JH, Peters A. eds. Cerebral cortex: Extrastriate cortex in primates. Plenum Press, New York.

    Google Scholar 

  102. Salminen-Vaparanta, N., Koivisto, M., Noreika, V., Vanni, S., & Revonsuo, A. (2012). Neuronavigated transcranial magnetic stimulation suggests that area V2 is necessary for visual awareness. Neuropsychologia. 50, 1621–7.

    PubMed  Article  Google Scholar 

  103. Scholte, H.S., Jolij, J., Fahrenfort, J.J., & Lamme, VA. (2008). Feedforward and recurrent processing in scene segmentation: electroencephalography and functional magnetic resonance imaging. Journal of Cognitive Neuroscience. 20, 2097–109.

    PubMed  Article  Google Scholar 

  104. Sheehy, N. (2003). Fifty Key Thinkers in Psychology. New York: Routledge http://www.drbrem.net/ CPY679/tichenerbio.pdf

    Google Scholar 

  105. Silvanto, J., Cowey, A., Lavie, N., & Walsh, V. (2005). Striate cortex (V1) activity gates awareness of motion. Nature Neuroscience. 8, 143–4.

    PubMed  Article  Google Scholar 

  106. Sincich, L.C., & Horton, J.C. (2005). The circuitry of V1 and V2: integration of color, form, and motion. Annual Review of Neuroscience. 28, 303–26.

    PubMed  Article  Google Scholar 

  107. Sincich, L.C., Jocson, CM., & Horton, J.C. (2007). Neurons in V1 patch columns project to V2 thin stripes. Cerebral Cortex. 17, 935–41.

    PubMed  Article  Google Scholar 

  108. Skrbina, D. (2009). Minds, objects, and relations: Toward a dual-aspect ontology (Chapter 19). In Skrbina D. ed. Mind that abides: Panpsychism in the new millennium. John Benjamins, Amsterdam, 361–82.

    Google Scholar 

  109. Sparing, R., Mottaghy, F.M., Ganis, G., Thompson, W.L., Töpper, R., Kosslyn, S.M., & Pascual-Leone, A. (2002). Visual cortex excitability increases during visual mental imagery—a TMS study in healthy human subjects. Brain Research. 938, 92–7.

    PubMed  Article  Google Scholar 

  110. Stabell, U., & Stabell, B. (1994). Mechanisms of chromatic rod vision in scotopic illumination. Vision Research. 34, 1019–27.

    PubMed  Article  Google Scholar 

  111. Sugita, Y (2004). Experience in early infancy is indispensable for color perception. Current Biology. 14, 1267–71.

    PubMed  Article  Google Scholar 

  112. Takahata, T., Higo, N., Kaas, J.H., Yamamori, T. (2009). Expression of immediate-early genes reveals functional compartments within ocular dominance columns after brief monocular inactivation. Proceedings of the National Academy of Sciences of the United States of America. 106, 12151–5.

    PubMed  PubMed Central  Article  Google Scholar 

  113. Taylor, P.C., Walsh, V., & Eimer, M. (2010). The neural signature of phosphene perception. Human Brain Mapping. 31, 1408–17.

    PubMed  PubMed Central  Article  Google Scholar 

  114. Tehovnik, E.J., & Slocum, W.M. (2007). What delay fields tell us about striate cortex. Journal of Neurophysiology. 98, 559–76.

    PubMed  Article  Google Scholar 

  115. Titchener, E.B. (1929). Systematic Psychology: Progelomena. New York, The Macmillen Company.

    Book  Google Scholar 

  116. Tononi, G. (2004). An information integration theory of consciousness. BMC Neuroscience. 5, 42.

    PubMed  PubMed Central  Article  Google Scholar 

  117. Tootell, R.B.H., Tsao, D., & Vanduffel, W. (2003). Neuroimaging weighs in: humans meet macaques in “primate” visual cortex. Journal of Neuroscience. 23, 3981–9.

    PubMed  Google Scholar 

  118. Treisman, A. (1996). The binding problem. Current Opinion in Neurobiology. 6, 171–8.

    PubMed  Article  Google Scholar 

  119. Vannucci, M., & Mazzoni, G. (2009). Individual differences in object and spatialimagery: Personality correlates. Personality and Individual Differences. 46, 402–5.

    Article  Google Scholar 

  120. Vimal, R.L.P. (1997). Orientation tuning of the spatial-frequency-tuned mechanisms of the Red-Green channel. Journal of the Optical Society of America A: Optics, Image Science, and Vision. 14, 2622–32.

    Article  Google Scholar 

  121. Vimal, R.L.P. (1998a). Color-luminance interaction: data produced by oblique cross masking. Journal of the Optical Society of America A: Optics, Image Science, and Vision. 15, 1756–66.

    PubMed  Article  Google Scholar 

  122. Vimal, R.L.P. (1998b). Spatial-frequency tuning of sustained nonoriented units of the Red-Green channel. Journal of the Optical Society of America A: Optics, Image Science, and Vision. 15, 1–15.

    PubMed  Article  Google Scholar 

  123. Vimal, R.L.P. (2000). Spatial color contrast matching: broad-bandpass functions and the flattening effect. Vision Research. 40, 3231–43.

    PubMed  Article  Google Scholar 

  124. Vimal, R.L.P. (2002a). Spatial frequency discrimination: a comparison of achromatic and chromatic conditions. Vision R esearch. 42, 599–611.

    Article  Google Scholar 

  125. Vimal, R.L.P. (2002b). Spatial frequency tuned mechanisms of the Red-Green channel estimated by oblique masking. Journal of the Optical Society of America A: Optics, Image Science, and Vision. 19, 276–88.

    PubMed  Article  Google Scholar 

  126. Vimal, R.L.P. (2008). Proto-experiences and Subjective Experiences: Classical and Quantum Concepts. Journal of Integrative Neuroscience. 7, 49–73.

    PubMed  Article  Google Scholar 

  127. Vimal, R.L.P. (2010a). Matching and selection of a specific subjective experience: conjugate matching and subjective experience. Journal of Integrative Neuroscience. 9, 193–251.

    PubMed  Article  Google Scholar 

  128. Vimal, R.L.P. (2010b). On the Quest of Defining Consciousness. Mind and Matter. 8, 93–121.

    Google Scholar 

  129. Vimal, R.L.P. (2011a). Necessary ingredients of consciousness: integration of psychophysical, neurophysiological, and consciousness research for the red -green channel. Vision Research Institute: Living Vision and Consciousness Research 2, 1–50. (accessed May 11, 2012). <http://sites.google.com/site/rlpvimal/Home/2009-Vimal-Necessary-Ingredients-Conciousness-LVCR-2-1.pdf>

    Google Scholar 

  130. Vimal, R.L.P. (2011b). Scientific religions: science-religion unification through extended dual-aspect monism and its novel critiques. Vision Research Institute: Living Vision and Consciousness Research 4(8):1–50.<http://sites.google.com/site/rlpvimal/Home 2011-Vimal-Problems-Dualism-Religions-DAM-4-8.pdf> (accessed May 11, 2012).

    Google Scholar 

  131. Vimal, R.L.P. (2012). Emergence in dual-aspect monism. In Pereira Jr A, Lehmann D. eds. The Unity of Mind, Brain and World: Current Perspectives on a Science of Consciousness. Cambridge University Press, Cambridge, In preparation [Available for comments: <http://sites.google.com/site/rlpvimal/Home/2012-Vimal-Emergence-UMBW-CUP-2.doc>], forthcoming.

    Google Scholar 

  132. Vimal, R.L.P., & Pandey-Vimal, M-UC. (2007). Ancient historical scripture and color vision. Color Research & Application. 32, 332–3.

    Article  Google Scholar 

  133. Vimal, R.L.P., Pandey, R., & McCagg, A.C. (1995). Temporal color contrast matching: the flattening effect and color-contrast-constancy. Investigative Ophthalmology & Visual Science. 36, 664 (abstract).

    Google Scholar 

  134. Vimal, R.L.P., Pokorny, J.M., & Smith, V.C. (1987). Appearance of steadily viewed light. Vision Research. 27, 1309–18.

    PubMed  Article  Google Scholar 

  135. Wandell, B.A. (1999). Computational neuroimaging of human visual cortex. Annual Review of Neuroscience. 22, 45–173.

    Article  Google Scholar 

  136. Wang, C., Bókkon, I., Dai, J., & Antal, I. (2011). First experimental demonstration of spontaneous and visible light-induced photon emission from rat eyes. Brain Research. 1369, 1–9.

    PubMed  Article  Google Scholar 

  137. Wikler, K.C., & Rakic, P. (1990). Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates. Journal of Neuroscience. 10, 3390–401.

    PubMed  Google Scholar 

  138. Wong-Riley, M., Anderson, B., Liebl, W., & Huang, Z. (1998). Neurochemical organization of the macaque striate cortex: correlation of cytochrome oxidase with Na+K+ATPase, NADPH-diaphorase, nitric oxide synthase, and N-methyl-D-aspartate receptor subunit 1. N euroscience. 83, 1025–45.

    Google Scholar 

  139. Wong-Riley, M.T. (1989). Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends in Neurosciences. 12, 94–101.

    PubMed  Article  Google Scholar 

  140. Xiao, Y., & Felleman, D.J. (2004). Projections from primary visual cortex to cytochrome oxidase thin stripes and interstripes of macaque visual area 2. Proceedings of the National Academy of Sciences of the United States of America. 101, 7147–51.

    PubMed  PubMed Central  Article  Google Scholar 

  141. Youdim, K.A., Martin, A., & Joseph, J.A. (2000). Essential fatty acids and the brain: possible health implications. Internation al Journal of Developmental Neuroscience. 18, 383–99.

    Article  Google Scholar 

  142. Zeki, S.M. (1977). Simultaneous anatomical demonstration of the representation of the vertical and horizontal meridians in areas V2 and V3 of rhesus monkey visual cortex. Proceedings of the Royal Society of London. Series B, Biological sciences. 195, 517–23.

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to István Bókkon.

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bókkon, I., Vimal, R.L.P. Theoretical Implications on Visual (Color) Representation and Cytochrome Oxidase Blobs. Act Nerv Super 55, 15–37 (2013). https://doi.org/10.1007/BF03379594

Download citation

Key words

  • Color representation
  • Visible electromagnetic photons
  • Amodal and modal visual completions
  • CO-rich blobs in V1
  • Phosphenes
  • Metaphysics
  • Materialism
  • Dual-aspectmonism
  • Visual channels