Skip to main content
Log in

Making superconductors hard

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Summary

Superconducting properties are conveniently divided into three groups. Primary properties are those, like Tc and Hc, that are relatively structure and composition-insensitive. Secondary properties are those, like Hc1 and Hc2, that are composition-sensitive through dependence on normal state resistivity. Primary and secondary properties are both equilibrium properties. Tertiary properties are non-equilibrium properties, like Ic and magnetic hysteresis, that are extremely structure-sensitive, being controlled by internal structural heterogeneities. The relationships among the various properties are shown schematically in Fig. 11.

The bulk critical currents in the mixed state, because of suggestive analogies to mechanical yield stresses and ferromagnetic coercive forces, seem most interesting to a physical metallurgist. Most of the standard ways of increasing hardness—cold work, precipitation, radiation damage, martensitic transformation—have already been shown to be effective in enhancing critical currents. However, these effects need more detailed understanding, and the effects of spinodal decomposition, internal oxidation, SAP-type processing, and various composite structures remain virtually unexplored.

The major role of physical metallurgists in superconductivity will be to improve our understanding of structure-properties relations, and thereby provide a basis for improved properties. However, it also seems likely that as this understanding of structure-properties relations grows, superconducting measurements will be used more and more as a tool to study metallurgical structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. D. Livingston and H. W. Schadler: Prog. Mater. Sci., 1964, vol. 12, pp. 183–287.

    Google Scholar 

  2. J. D. Livingston: Phys. Rev., 1963, vol. 129, pp. 1943–1949.

    Article  Google Scholar 

  3. C. P. Bean: Rev. Mod. Phys., 1964, vol. 36, pp. 31–39.

    Article  Google Scholar 

  4. W. W. Webb: Phys. Rev. Letters., 1963, vol. 11, pp. 191–193; R. L. Fleischer: Phys. Letters, 1962, vol. 3, pp. 111–112.

    Article  Google Scholar 

  5. A. V. Narlikar and D. Dew-Hughes: Phys. Stat. Sol., 1964, vol. 6, pp. 383–390; D. Kramer and C. G. Rhodes: Trans. Met. Soc. AIME, 1965, vol. 233, pp. 192–198.

    Article  Google Scholar 

  6. J. D. Livingston: Rev. Mod. Phys., 1964, vol. 36, pp. 54–57.

    Article  Google Scholar 

  7. G. A. Beske. Sc.D. Thesis, 1965, Massachusetts Institute of Technology, Metallurgy Department.

  8. J. Friedel, P. G. de Gennes, and J. Matricon: Appl. Phys. Letters, 1963, vol. 2, pp. 119–121.

    Article  Google Scholar 

  9. P. D. Merica, R. G. Waltenberg, and H. Scott: Trans. AIME, 1921, vol. 64, pp. 41–77.

    Google Scholar 

  10. L. G. Dijkstra and C. Wert: Phys. Rev., 1950, vol. 79, pp. 979–985.

    Article  Google Scholar 

  11. T. H. Alden and J. D. Livingston Appl. Phys. Letters, 1966, Vol. 8, pp. 6–7.

    Article  Google Scholar 

  12. J. D. Livingston: J. Appl. Phys., 1963, vol. 34, pp. 3028–3036; Acta Met., 1963, vol. 11, pp. 1371–1373.

    Article  Google Scholar 

  13. P. S. Swartz, H. R. Hart, Jr., and R. L. Fleischer: Appl. Phys. Letters, 1964, vol. 4, pp. 71–73; J. P. McEvoy, Jr., R. F. Decell, and R. L. Novak:Appl. Phys. Letters, 1964, vol. 4, pp. 43–45; G. W. Cullen and R. L. Novak: Appl. Phys. Letters, 1964, vol. 4, pp. 147–149.

    Article  Google Scholar 

  14. C. P. Bean, R. L. Fleischer, P. S. Swartz, and H. R. Hart, Jr.: J. Appl. Phys., to be published.

  15. J. D. Livingston: Final Report, 1965, Contract No. AF-33(657)-11722, BPSN 63-6899-737102, Wright-Patterson Air Force Base, Ohio.

    Google Scholar 

  16. S. A. Levy, R. W. Kraft, and Y. B. Kim: J. Appl. Phys., to be published.

  17. D. Saint-James and P. G. DeGennes: Phys. Letters, 1963, vol. 7, pp. 306–308.

    Article  Google Scholar 

  18. P. W. Anderson and Y. B. Kim: Rev. Mod. Phys., 1964, vol. 36, pp. 39–43.

    Article  Google Scholar 

  19. Z. S. Basinski: Proc. Roy. Soc., 1957, vol. A240, pp. 229–242; Austral. J. Phys., 1960, vol. 13, pp. 354–358.

    Article  Google Scholar 

  20. V. A. Phillips: Phil. Mag., 1965, vol. 11, pp. 775–797.

    Article  Google Scholar 

  21. K. Mendelssohn: Proc. Roy. Soc., 1935, vol. A152, pp. 34–41; Cryogenics, 1963, vol. 3, pp. 129–140.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Livingston, J.D. Making superconductors hard. JOM 18, 698–704 (1966). https://doi.org/10.1007/BF03378458

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03378458

Navigation