Skip to main content
Log in

Plastic Anisotropy of Zinc Monocrystals

  • Published:
JOM Aims and scope Submit manuscript

Abstract

Glide on the basal (0001) and prismatic (1010̄) planes of zinc monocrystals has been investigated at 250° to 400°C. Prismatic glide obeys Schmid’s law and an equation of state relating the glide strain rate and the shear stress, γ = 700 τ8 e−38,000/RT. Impurities raise the stress exponent and the activation energy; the stress for prismatic glide at a given rate is much higher than for basal glide; and multiple prismatic glide causes no appreciable strain hardening. The creep of polycrystalline zinc is controlled by prismatic glide at high temperatures. The discussion considers the anisotropy of zinc crystals and its effect on dislocation motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. F. Kolesnikov: New Slip Planes in Zinc. Journal of Experimental and Theoretical Physics, 1938, vol. 8, p. 1031.

    Google Scholar 

  2. E. Schmid and W. Boas: Plasticity of Crystals. 1950. London. F. A. Hughes & Co. Ltd.

    Google Scholar 

  3. R. W. Cahn, I. J. Bear, and R. L. Bell: Some Observations on the Deformation of Zinc at High Temperatures. Journal Inst, of Metals, 1953, vol. 82, p. 481.

    Google Scholar 

  4. J. J. Gilman and V. J. DeCarlo: Growth of Oriented Square Zinc Monocrystals. Review of Scientific Instruments, 1955, vol. 26, p. 1079.

    Article  Google Scholar 

  5. J. J. Gilman and V. J. DeCarlo: Chemical Polishing of Pure Zinc. AIME Trans., 1956, vol. 206, p. 511; Journal of Metals, May 1956.

    Google Scholar 

  6. H. Mark, M. Polanyi, and E. Schmid: Vorgänge bei der Dehnung von Zinkkristallen. Ztsch. für Physik, 1922, vol. 12, p. 58.

    Article  Google Scholar 

  7. R. Houwink: Elasticity, Plasticity, and Structure of Matter. 1953, 2nd Ed., p. 11. Washington. Harren Press.

    Google Scholar 

  8. E. Schmid and W. Boas: Elasticity, Plasticity, and Structure of Matter. 1953, 2nd Ed., p. 103. Washington. Harren Press.

    Google Scholar 

  9. J. J. Gilman: Cleavage Steps on Zinc Monocrystals—Their Origin and Patterns. AIME Trans., 1955, vol. 203, p. 1252; Journal of Metals, November 1955.

    Google Scholar 

  10. W. Kauzmann: Flow of Solid Metals from the Standpoint of the Chemical Rate Theory. AIME Trans., 1941, vol. 143, p. 57.

    Google Scholar 

  11. G. A. Shirn, E. S. Wajda, and H. B. Huntington: Self-Diffusion in Zinc. Acta Metallurgica, 1955, vol. 1, p. 513.

    Article  Google Scholar 

  12. C. A. Wert and E. P. T. Tyndall: Elasticity of Zinc Crystals. Journal of Applied Physics, 1949, vol. 20, p. 587.

    Article  Google Scholar 

  13. J. D. Eshelby: Edge Dislocations in Anisotropic Media. Philosophical Magazine, 1949, vol. 40, p. 903.

    Article  MATH  Google Scholar 

  14. F. R. N. Nabarro: Dislocations in Simple Cubic Lattices. Proceedings Physical Soc, London, 1947, vol. 59, p. 256.

    Article  Google Scholar 

  15. A. J. Foreman, M. A. Jaswon, and J. K. Wood: Factors Controlling Dislocation Widths. Proceedings Physical Soc., London, 1951, vol. 64A, p. 156.

    Article  MATH  Google Scholar 

  16. W. G. Cady: Piezoelectricity. 1946. New York. McGraw-Hill Book Co. Inc.

    Google Scholar 

  17. P. M. Morse: Diatomic Molecules According to the Wave Mechanics. Physical Review, 1929, vol. 34, p. 57.

    Article  MATH  Google Scholar 

  18. C. Kittel: Introduction to Solid State Physics. 1953, p. 78. New York. J. Wiley & Sons.

    MATH  Google Scholar 

  19. International Critical Tables. 1926. New York. McGraw-Hill Co. Inc.

  20. A. H. Cottrell: Dislocations and Plastic Flow in Crystals. 1953, pp. 208–210. Oxford. Oxford University Press.

    MATH  Google Scholar 

  21. H. Suzuki: Chemical Interaction of Solute Atoms with Dislocations. Sci. Rep. Inst., Tohoku Univ., 1952, vol. A4, p. 455.

    Google Scholar 

  22. A. H. Cottrell: Sci. Rep. Inst., Tohoku Univ., 1952, vol. A4, pp. 134–150.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

TP 4270E. Manuscript, Sept. 15, 1955. Cleveland Meeting, October 1956.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gilman, J.J. Plastic Anisotropy of Zinc Monocrystals. JOM 8, 1326–1336 (1956). https://doi.org/10.1007/BF03377877

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03377877

Navigation