D.G. Aronson, H.F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics, Adv. Math. 30 (1978), 33–76.
MathSciNet
Article
MATH
Google Scholar
H. Berestycki, F. Hamel, Generalized traveling waves for reaction-diffusion equations, In: Perspectives in Nonlinear Partial Differential Equations. In honor of H. Brezis, Amer. Math. Soc., Contemp. Math. 446, 2007, 101–123.
Article
MATH
Google Scholar
H. Berestycki, F. Hamel, Generalized transition waves and their properties, Comm. Pure Appl. Math. 65 (2012), 592–648.
MathSciNet
Article
MATH
Google Scholar
X. Chen, J.-S. Guo, F. Hamel, H. Ninomiya, J.-M. Roquejoffre, Traveling waves with paraboloid like interfaces for balanced bistable dynamics, Ann. Inst. H. Poincaré, Analyse Non Linéaire 24 (2007), 369–393.
MathSciNet
Article
MATH
Google Scholar
M. Del Pino, M. Kowalczyk, J. Wei, Traveling waves with multiple and non-convex fronts for a bistable semilinear parabolic equation, Comm. Pure Appl. Math. 66 (2013), 481–547.
MathSciNet
Article
MATH
Google Scholar
P.C. Fife, J.B. McLeod, The approach of solutions of nonlinear diffusion equations to traveling front solutions, Arch. Ration. Mech. Anal. 65 (1977), 335–361.
MathSciNet
Article
MATH
Google Scholar
F. Hamel, Bistable transition fronts in ℝN, Adv. Math. 289 (2016), 279–344.
MathSciNet
Article
MATH
Google Scholar
F. Hamel, R. Monneau, Solutions of semilinear elliptic equations in ℝNwith conical-shaped level sets, Comm. Part. Diff. Equations 25 (2000), 769–819.
F. Hamel, R. Monneau, J.-M. Roquejoffre, Existence and qualitative properties of multidimensional conical bistable fronts, Disc. Cont. Dyn. Syst. A 13 (2005), 1069–1096.
MathSciNet
Article
MATH
Google Scholar
F. Hamel, R. Monneau, J.-M. Roquejoffre, Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Disc. Cont. Dyn. Syst. A 14 (2006), 75–92.
MathSciNet
MATH
Google Scholar
F. Hamel, L. Rossi, Admissible speeds of transition fronts for non-autonomous monostable equations, SIAM J. Math. Anal. 47 (2015), 3342–3392.
MathSciNet
Article
MATH
Google Scholar
F. Hamel, L. Rossi, Transition fronts for the Fisher-KPP equation, Trans. Amer. Math. Soc. 368 (2016), 8675–8713.
MathSciNet
Article
MATH
Google Scholar
A. Mellet, J. Nolen, J.-M. Roquejoffre, L. Ryzhik, Stability of generalized transition fronts, Comm. Part. Diff. Equations 34 (2009), 521–552.
MathSciNet
Article
MATH
Google Scholar
A. Mellet, J.-M. Roquejoffre, Y. Sire, Generalized fronts for one-dimensional reaction-diffusion equations, Disc. Cont. Dyn. Syst. A 26 (2010), 303–312.
MathSciNet
MATH
Google Scholar
G. Nadin, Critical travelling waves for general heterogeneous one-dimensional reaction-diffusion equations, Ann. Inst. H. Poincaré, Non Linear Anal. 32 (2015), 841–873.
MathSciNet
Article
MATH
Google Scholar
G. Nadin, L. Rossi, Propagation phenomena for time heterogeneous KPP reaction-diffusion equations, J. Math. Pures Appl. 98 (2012), 633–653.
MathSciNet
Article
MATH
Google Scholar
G. Nadin, L. Rossi, Transition waves for Fisher-KPP equations with general time-heterogeneous and space-periodic coeffcients, Anal. PDE 8 (2015), 1351–1377.
MathSciNet
Article
MATH
Google Scholar
H. Ninomiya, M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Diff. Equations 213 (2005), 204–233.
MathSciNet
Article
MATH
Google Scholar
H. Ninomiya, M. Taniguchi, Global stability of traveling curved fronts in the Allen-Cahn equations, Disc. Cont. Dyn. Syst. A 15 (2006), 819–832.
MathSciNet
Article
MATH
Google Scholar
J. Nolen, J.-M. Roquejoffre, L. Ryzhik, A. Zlatoš, Existence and non-existence of Fisher-KPP transition fronts, Arch. Ration. Mech. Anal. 203 (2012), 217–246.
MathSciNet
Article
MATH
Google Scholar
J. Nolen, L. Ryzhik, Traveling waves in a one-dimensional heterogeneous medium, Ann. Inst. H. Poincaré, Analyse Non Linéaire 26 (2009), 1021–1047.
MathSciNet
Article
MATH
Google Scholar
J.-M. Roquejoffre, V. Roussier-Michon, Nontrivial large-time behavior in bistable reaction-diffusion equations, Ann. Mat. Pura Appl. 188 (2009), 207–233.
MathSciNet
Article
MATH
Google Scholar
W. Shen, Traveling waves in diffusive random media, J. Dyn. Diff. Equations 16 (2004), 1011–1060.
MathSciNet
Article
MATH
Google Scholar
W. Shen, Existence, uniqueness, and stability of generalized traveling waves in time dependent monostable equations, J. Dyn. Diff. Equations 23 (2011), 1–44.
MathSciNet
Article
MATH
Google Scholar
W. Shen, Z. Shen, Stability, uniqueness and recurrence of generalized traveling waves in time heterogeneous media of ignition type, preprint http://arxiv.org/abs/1408.3848 url).
M. Taniguchi, Traveling fronts of pyramidal shapes in the Allen-Cahn equation, SIAM J. Math. Anal. 39 (2007), 319–344.
MathSciNet
Article
MATH
Google Scholar
M. Taniguchi, The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations, J. Diff. Equations 246 (2009), 2103–2130.
MathSciNet
Article
MATH
Google Scholar
M. Taniguchi, Multi-dimensional traveling fronts in bistable reaction-diffusion equations, Disc. Cont. Dyn. Syst. A 32 (2012), 1011–1046.
MathSciNet
Article
MATH
Google Scholar
A. Zlatoš, Transition fronts in inhomogeneous Fisher-KPP reaction-diffusion equations, J. Math. Pures Appl. 98 (2012), 89–102.
MathSciNet
Article
MATH
Google Scholar
A. Zlatoš, Generalized traveling waves in disordered media: existence, uniqueness, and stability, Arch. Ration. Mech. Anal. 208 (2013), 447–480.
MathSciNet
Article
MATH
Google Scholar
A. Zlatoš, Existence and non-existence of transition fronts for bistable and ignition reactions, Ann. Inst. H. Poincaré, Analyse Non Linéaire, forthcoming.