Skip to main content
Log in

Failure of acrylic bone cements under triaxial stresses

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Bone cements work under complex triaxial states of stress between the prosthesis and the bone. However, no failure criteria have been formulated for such materials. In the present work two acrylic bone cements have been tested under triaxial stresses up to failure and it has been shown that they behave following the Coulomb-Mohr criterion. Tests have been carried out with moulded thick-wall cylindrical hollow specimens. The samples were unidirectionally compressed whilst a constant internal pressure was provided. Although weaker, one of the bone cements exhibits a similar behaviour to industrial polymethylmethacrylate (PMMA). The different behaviour of these bone cements cannot be related to porosity, which ranges from 1 to 4% in both materials, nor to their different molecular weight. It has been shown that the different morphologies of the bone cement PMMA powders may account for their different mechanical behaviour. It seems that a more homogeneous distribution of sizes, ranging from 10 to 50 µm, and shapes (practically spherical) gives rise to a material which behaves in a similar way to industrial PMMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. CHARNLEY, J. Bone Jt. Surg. 42B (1960) 28.

    Google Scholar 

  2. Idem. ibid. 46B (1964) 518.

    Google Scholar 

  3. S. SAHA and S. PAL, J. Biomed. Mater. Res. 18 (1984) 435.

    Article  Google Scholar 

  4. J. N. WILSON and J. T. SCALES, Clin. Orth. Rel. Res. 72 (1970) 145.

    Google Scholar 

  5. H. C. AMSTUTZ, ibid. 72 (1970) 123.

    Google Scholar 

  6. N. S. EFTEKHAR, ibid. 225 (1987) 207.

    Google Scholar 

  7. P. D. WILSON Jr, ibid. 225 (1987) 218.

    Google Scholar 

  8. E. P. LAUTENSCHLAGER, S. I. STUPP and J. C. KELLER, in “Function Behaviour of Orthopaedic Biomaterials”, Vol. II, Applications, edited by P. Ducheyne and G. W. Hastings (CRC Press, Boca Raton, Florida, 1984).

    Google Scholar 

  9. K. TERZAGHI, “Theoretical Soil Mechanics” (Wiley, New York, 1943).

    Book  Google Scholar 

  10. B. PAUL, in “Fracture, an Advanced Treatise”, Vol. 2, edited by H. Leibowitz (Academic, New York, 1968).

    Google Scholar 

  11. I. M. WARD, in “Mechanical Properties of Solid Polymers” (Wiley, New York, 1983).

    Google Scholar 

  12. A. J. KINLOCH and R. J. YOUNG, in “Fracture Behaviour of Polymers” (Applied Science, London, 1983).

    Google Scholar 

  13. D. R. MEARS, K. D. PAE and J. A. SAUER, J. Appl. Phys. 40 (1969) 4229.

    Article  Google Scholar 

  14. A. W. CHRISTIANSEN, E. BAER and S. V. RADCLIFFE, Phil. Mag. 24 (1971) 451.

    Article  Google Scholar 

  15. P. B. BOWDEN and J. A. JUKES, J. Mater. Sci. 3 (1968) 183.

    Article  Google Scholar 

  16. S. RABINOWITZ, I. M. WARD and J. S. C. PARRY, ibid. 5 (1970) 29.

    Article  Google Scholar 

  17. ASTM F451-76, in “Annual Book of ASTM Standards, Section 13, Medical Devices”, Vol. 13.01 (ASTM, Philadelphia, 1986).

  18. S. P. TIMOSHENKO and J. N. GOODIER, in “Theory of Elasticity” (McGraw-Hill, New York, 1951).

    Google Scholar 

  19. F. W. BILLMEYER Jr., in “Textbook of Polymer Science” (Wiley, New York, 1984).

    Google Scholar 

  20. ASM Metals Handbook, Vol. 8, 8th ed, (American Society for Metals, Metals Park, Ohio, 1975).

  21. R. C. GIFKINS, in “Optical Microscopy of Metals” (Pitman, London, 1970).

    Google Scholar 

  22. R. P. KUSY, J. Biomed. Mater. Res. 12 (1978) 271.

    Article  Google Scholar 

  23. E. RYSHKEWITCH, J. Amer. Ceram. Soc. 36 (1953) 65.

    Article  Google Scholar 

  24. A. SILVESTRE et al.in Proceedings of Mecombe’ 86, IV Mediterranean Conference on Medical and Biological Engineering, Seville, September 1986, edited by L. Roa and J. R. Zaragoza (Puntex, Barcelona, 1986) p. 56.

    Google Scholar 

  25. M. VILA and J. A. PLANELL, unpublished results.

  26. N. J. HOLM, Acta Orth. Scand. 48 (1977) 436.

    Article  Google Scholar 

  27. J. B. PARK, in “Biomaterials Science and Engineering” (Plenum, New York, 1984).

    Book  Google Scholar 

  28. R. P. KUSY and D. T. TURNER, J. Biomed. Mater. Res. Symp. 6 (1975) 89.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silvestre, A., Raya, A., Fernández-Fairén, M. et al. Failure of acrylic bone cements under triaxial stresses. J Mater Sci 25, 1050–1057 (1990). https://doi.org/10.1007/BF03372202

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03372202

Keywords

Navigation