Skip to main content
Log in

SEM investigations of slip-line fields around blunted cracks under mixed-mode conditions

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The slip-line field around the tips of cracks was studied using extensive experimental evidence with electron scanning microscopy. Thin and thick tension specimens made of polycarbonate were edge-cracked ensuring predominant conditions of either plane stress or plane strain. The evolution of blunting and of the creation of the respective slip-line field in the intermediate phase between blunting and initiation of slow propagation of the crack were studied under a continuously increasing loading mode. It was shown that blunting depends on the type of stress state (plane stress or plane strain), on the mode of loading (mode I, mixed mode), and on the ductility of the material. Three different types of blunting were detected, the already known round-nosed and flat-nosed modes and, furthermore, an intermediate type of cornered and rounded-off front of the crack. The characteristic properties of these types are presented. The slip-line fields accompanying the phenomenon of blunting and indicating the initiation and evolution of the plastic enclaves were detected in all types of loading and specimens using the brittle-coating technique and its variations. It was shown that not only the plastic enclaves developed during this step of loading but also the significant elastic components of stresses influence the mode of development of the respective slip-line yielding a combined type corresponding in between the Rice-Johnson field for plane strain and the Theocaris field for plane stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. R. RICE, J. Appl. Mech. 35 (1968) 379.

    Article  Google Scholar 

  2. G. P. CHEREPANOV, Prikl. Mat. Mekh. 31 (1967) 476.

    Google Scholar 

  3. J. W. HUTCHINSON, J. Mech. Phys. Solids 16 (1968) 337.

    Article  Google Scholar 

  4. C. F. SHIH, PhD thesis, Harvard University, Cambridge, Massachusetts (1963).

    Google Scholar 

  5. B. COTERELL, E. LEE and Y. W. MAI, Int. J. Fract. 20 (1982) 243.

    Article  Google Scholar 

  6. S. NEMAT-NASSER and M. OBATA, in “Recent Developments in Applied Mathematics” (Renesselaer, New York, 1983) p. 153.

    Google Scholar 

  7. T. C. WANG and K. J. MILLER, Engng. Fract. Mech. 19 (1984) 621.

    Article  Google Scholar 

  8. J. R. RICE and M. A. JOHNSON, in “Inelastic Behavior of Solids” edited by M. F. Kanninen (McGraw-Hill, New York, 1970) p. 641.

    Google Scholar 

  9. M. SAKA, H. ABÉ and S. TANAKA, Comput. Mech. 1 (1986) 11.

    Article  Google Scholar 

  10. J. R. RICE and E. P. SORENSEN, J. Mech. Phys. Solids 26 (1978) 163.

    Article  Google Scholar 

  11. E. P. SORENSEN, ASTM STP 668 (American Society for Testing and Materials, Philadelphia, Pennsylvania, 1979) p. 151.

    Google Scholar 

  12. W. J. DRUGAN, J. R. RICE and T. L. SHAM, J. Mech. Phys. Solids 30 (1982) 447.

    Article  Google Scholar 

  13. G. P. CHEREPANOV, in “Mechanics of Brittle Fracture” (in Russian) (Nauka, Moscow, 1974); English translation by A. L. Peabody (McGraw-Hill, New York, 1979) p. 284.

    Google Scholar 

  14. P. S. THEOCARIS, J. Engng Fract. Mech. 31 (1988) 255.

    Article  Google Scholar 

  15. P. S. THEOCARIS and V. N. KYTOPOULOS, J. Mater. Sci. 24 (1989) 2358.

    Article  Google Scholar 

  16. P. S. THEOCARIS, Int. J. Mech. Sci. 17 (1975) 475.

    Article  Google Scholar 

  17. Idem, ibid. 18 (1976) 171.

    Article  Google Scholar 

  18. F. A. McCLINTOCK, in “Fracture: An Advanced Treatise”, Vol. 3, edited by H. Leibowitz (Academic, New York, 1971) pp. 45, 182–3.

    Google Scholar 

  19. McMEEKING, J. Mech. Phys. Solids 25 (1977) 357.

    Article  Google Scholar 

  20. A. NEEDLEMAN and V. TVERGAARD, ASTM-STP 803, Vol. 1 (American Society for Testing and Materials, Philadelphia, Pennsylvania, 1983) p. 80.

    Google Scholar 

  21. J. CHRISTOFFERSEN and J. W. HUTCHINSON, J. Mech. Phys. Solids 27 (1979) 465.

    Article  Google Scholar 

  22. M. L. WILLIAMS, J. Appl. Mech. 24 (1957) 109.

    Google Scholar 

  23. V. Z. PARTON and E. M. MOROSOV, “Elastic-Plastic Fracture Mechanics” (Mir, Moskow, 1978) p. 163 (in English).

    Google Scholar 

  24. J. M. PARVIN and J. G. WILLIAMS, J. Mater. Sci. 10 (1975) 1883.

    Article  Google Scholar 

  25. D. POST, Proc. Soc. Exp. Stress Anal. 12 (1954) 99.

    Google Scholar 

  26. J. R. RICE, W. J. DRUGAN and T. L. SHAM, ASTM-STP 700 (American Society for Testing and Materials, Philadelphia, Pennsylvania, 1980) p. 189.

    Google Scholar 

  27. H. H. KAUSCH, “Polymers Properties and Applications”, Vol. 2, “Polymer Fracture” (Springer, Berlin 1978).

    Google Scholar 

  28. A. S. ARGON, Pure Appl. Chem. 43 (1–2) (1975) 247.

    Google Scholar 

  29. M. BEVIS and D. HULL, J. Mater. Sci. 5 (1970) 983.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Theocaris, P.S., Kytopoulos, V. SEM investigations of slip-line fields around blunted cracks under mixed-mode conditions. J Mater Sci 25, 997–1006 (1990). https://doi.org/10.1007/BF03372193

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03372193

Keywords

Navigation