Skip to main content
Log in

Effect of sulphide inclusion shape on plane-strain fracture toughness (KIC) of heat-treated structural low-alloy steels

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Three low-alloy structural steels with different levels of nickel, chromium and molybdenum and a carbon content of 0.4 wt% have been studied to determine the effect of the sulphide inclusion shape on the plane-strain fracture toughness (KIC) of ultra-high strength steels. The shape of the sulphide inclusions was changed by varying the hot-rolling reduction at a temperature of 1473 K. The shape of the inclusion was modified from a stringer to an ellipse at a similar volume fraction level by decreasing the hot-rolling reduction from 98 to 80%, independent of the steel. This had a differing response for the mechanical properties of each steel. For 0.4C-Ni-Cr-Mo steel, modifying the shape of the sulphide inclusions greatly improved KIC at an increased Charpy impact energy and similar strength level, independent of orientation. However, for 0.4C-Cr-Mo steel the mechanical properties were less affected than those for 0.4 C-Ni-Cr-Mo steel. Changing the shape of the sulphide inclusions had little effect on the mechanical properties of the 0.4 C steel. The results obtained are briefly discussed in terms of metallographic observations, X-ray measurements and fractography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. L. WILLIAMS, J. Appl Mech. Trans. ASME 24 (1957) 109.

    Google Scholar 

  2. ASTM E399-83, 1983 Annual Book of ASTM Standards E23-72 (American Society for Testing Materials, Philadelphia, 1983) pp. 170–553.

  3. G. Y. LAI, W. E. WOOD, R. A. CLARK, V. F. ZACKAY and E. R. PARKER, Metall. Trans. 5 (1974) 1663.

    Article  Google Scholar 

  4. W. E. WOOD, Engng. Fract. Mech. 7 (1975) 219.

    Article  Google Scholar 

  5. R. O. RITCHIE, B. FRANCIS and W. L. SERVER, Metall. Trans. A 7A (1976) 831.

    Article  Google Scholar 

  6. R. O. RITCHIE and R. M. HORN, ibid. 9A (1978) 899.

    Google Scholar 

  7. Y. TOMITA and K. OKABAYASHI, ibid. 14A (1983) 485.

    Article  Google Scholar 

  8. Idem., ibid. 14A (1983) 2387.

    Article  Google Scholar 

  9. Idem., ibid. 16A (1985) 83.

    Article  Google Scholar 

  10. Y. TOMITA, ibid. 18A (1987) 1495.

    Article  Google Scholar 

  11. Idem., Mater. Sci. Technol. 4 (1988) 613.

    Article  Google Scholar 

  12. W. C. LESLIE, Trans. Iron Steel Soc. 2 (1983) 1.

    Google Scholar 

  13. J. E. HILLARD and J. W. CAHN, Trans. TMS-AIME 221 (1961) 344.

    Google Scholar 

  14. J. DURNIN and K. A. RIDAL, J. Iron Steel Inst. 206 (1968) 60.

    Google Scholar 

  15. K. OKABAYASHI, Y. TOMITA and I. KUROKI, J. Iron and Steel Inst. Jpn. 62 (1976) 662.

    Google Scholar 

  16. E. R. PARKER and V. F. ZACKAY, Engng. Fract. Mech. 7 (1975) 371.

    Article  Google Scholar 

  17. M. SARIKAYA, B. G. STEINBERG and G. THOMAS, Metall. Trans. A 13A (1982) 2227.

    Article  Google Scholar 

  18. V. F. ZACKAY, E. S. PARKER and W. E. WOOD, in “The Microstructure and Design of Alloys,”, Proceedings of 3rd International Conference on Strength of Metals and Alloys, Vol. 1 (Institute of Metals and Iron and Steel Institute, London, 1973) pp. 175–179.

    Google Scholar 

  19. J. McMAHONE and G. THOMAS, ibid. pp. 180–184.

    Google Scholar 

  20. M. F. CARLSON, B. V. NARASIMHA and G. THOMAS, Metall Trans. A 10A (1979) 1273.

    Article  Google Scholar 

  21. S. LEE, L. MAJINO and R. J. ASARO, ibid. 16A (1985) 1633.

    Article  Google Scholar 

  22. R. A. GRANGE, Metall. Trans. 2 (1971) 417.

    Article  Google Scholar 

  23. W. JOLLEY, Trans. TMS-AIME, 242 (1968) 306.

    Google Scholar 

  24. Idem., J. Iron Steel Inst. 206 (1968) 170.

    Google Scholar 

  25. Y. TOMITA, J. Mater. Sci. 24 (1989) 1357.

    Article  Google Scholar 

  26. C. T. FORWARD and A. J. FORTY, Phil. Mag. 11 (1965) 1067.

    Article  Google Scholar 

  27. A. GILBERT, J. L. RATLIFF and W. R. WARKE, Trans. ASM 58 (1965) 142.

    Google Scholar 

  28. T. J. JOHNSTONE, R. J. STOKES and C. H. LI, Trans. TMS-AIME 221 (1961) 792.

    Google Scholar 

  29. A. S. TELEMAN and C. A. RAU Jr, in Proceedings of International Conference on Fracture, Sendai, Japan, 1965, Vol. B-I, pp. 691–709.

    Google Scholar 

  30. C. M. YEN and C. A. STICKELS, Metall. Trans. 1 (1970) 3037.

    Google Scholar 

  31. G. BERNARD, M. GRUMBACH and F. MOLIEXE, Met. Technol. 2 (1975) 512.

    Article  Google Scholar 

  32. T. V. VENKATASBRAMANIAN and T. J. BAKER, Met. Sci. 16 (1982) 543.

    Article  Google Scholar 

  33. T. J. MAKER, F. P. L. KAVISHE and J. WILSON, Mater. Sci. Technol. 2 (1986) 576.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomita, Y. Effect of sulphide inclusion shape on plane-strain fracture toughness (KIC) of heat-treated structural low-alloy steels. J Mater Sci 25, 950–956 (1990). https://doi.org/10.1007/BF03372184

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03372184

Keywords

Navigation