Skip to main content
Log in

Extended ductility and cavitation in a high manganese stainless steel

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The deformation behaviour of high manganese stainless steel has been studied by uniaxial test at temperatures ranging from 600° C (873 K) to 850° C (1123 K) and at strain rates of 2.8 × 10−4 to 1.4 × 10−2 sec−1. The maximum elongation (228%) is found to occur at 750° C (1023K) and with an initial strain rate of 4.16 × 10−4sec−1. Cavitation takes place throughout the gauge length of the specimens, with most of the cavities being located near to the fracture region. The cavitation phenomenon has been studied using metallography and the results have been analysed using a semi-empirical model of cavity growth. The cavity growth at high temperatures may be controlled either by diffusion or by a power-law growth process. For smaller cavity sizes, a diffusional growth mechanism is operative and there is a transition to a power-law growth process at a critical cavity radius, rc. The value of rc is found to increase with increase in temperature and decrease in strain rate. The computed critical cavity radii lie in the range of 0.7 to 2µm for the range of temperatures and strain rates used in this investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. W. EDINGTON, K. N. MELTON and C. P. CUTLER, Progr. Mater. Sci. 21 (1976) 157.

    Article  Google Scholar 

  2. K. A. PADMANABHAN and G. J. DAVIES, “Superplasticity” (Springer, Berlin, 1980) pp. 44–49, 120–132.

    Book  Google Scholar 

  3. C. W. HUMPHRIES and N. RILEY, J. Mater. Sci. 9 (1974) 1429.

    Article  Google Scholar 

  4. C. I. SMITH, B. NORGATE and N. RIDLEY, Met. Sci. 10 (1976) 182.

    Article  Google Scholar 

  5. B. P. KASHYAP and A. K. MUKHERJEE, Scripta Metall. 16 (1982) 541.

    Article  Google Scholar 

  6. E. H. TOSCANO, ibid. 17 (1983) 309.

    Article  Google Scholar 

  7. D. M. WARD, Sheet Metal Ind. 59 (1982) 28.

    Google Scholar 

  8. D. R. HARRIES, J. M. DUPOUY and C. H. WU, J. Nucl. Mater. 25 (1985) 133.

    Google Scholar 

  9. G. PIATTI, S. MATTEAZZI and G. PETRONE, Nucl. Engng. Design/Fusion. 2 (1985) 391.

    Article  Google Scholar 

  10. P. FENICI, D. BOERMAN, V. COEN, E. LANG, C. PONTI and W. SCHULE, Nucl. Eng. Design/Fusion. 1 (1984) 167.

    Article  Google Scholar 

  11. G. PIATTI and P. SCHILLER, J. Nucl. Mater. 141–143 (1986) 417.

    Article  Google Scholar 

  12. G. PIATTI and G. MUSSO, J. Mater. Sci. 21 (1986) 2339.

    Article  Google Scholar 

  13. G. PIATTI, D. BOERMAN and H. A. WEIR, Met. Sci. Tech. 4 (1986) 8.

    Google Scholar 

  14. C. PONTI, Fusion Technol. 13 (1988) 157.

    Google Scholar 

  15. R. C. GIBSON, H. W. HAYDEN and J. H. BROPHY, Trans. ASM 61 (1968) 85.

    Google Scholar 

  16. F. B. PICKERING, in “Proceedings of Stainless Steels 84”, Goeteborg, 1984 (The Institute of Metals, London, 1985) p. 2.

    Google Scholar 

  17. H. ISHIKAWA, D. G. BHAT, F. A. MOHAMED and T. G. LANGDON, Met. Trans. 8A (1977) 523.

    Article  Google Scholar 

  18. A. ARIELI and A. K. MUKHERJEE, Mater. Sci. Engng. 43 (1980) 47.

    Article  Google Scholar 

  19. M. K. RAO and A. K. MUKHERJEE, J. Mater. Sci. 22 (1987) 459.

    Article  Google Scholar 

  20. M. F. ASHBY, Acta. Metall. 20 (1972) 887.

    Article  Google Scholar 

  21. R. K. JADAVA and K. A. PADMANABHAN, J. Mater. Sci. 17 (1982) 2435.

    Article  Google Scholar 

  22. J. W. D. PATTERSON and N. RIDLEY, ibid. 21 (1981) 457.

    Article  Google Scholar 

  23. J. MUKHOPADHYAY, PhD thesis, Indian Institute of Technology, Bombay (1982).

    Google Scholar 

  24. N. RIDLEY, D. W. LIVESEY and A. K. MUKHERJEE, J. Mater. Sci. 19 (1984) 1321.

    Article  Google Scholar 

  25. J. PILLING and N. RIDLEY, Res Mechan. 23 (1988) 3.

    Article  Google Scholar 

  26. Idem., in Proceedings of “Superplasticity”, Phoenix, Arizona, January 1988 (The Metall. Soc. AIME, Warrendale, USA, 1988) p. 25.

    Google Scholar 

  27. D. HULL and D. E. RIMMER, Phil. Mag. 4 (1959) 673.

    Article  Google Scholar 

  28. M. V. SPEIGHT and J. E. HARRIS, Met. Sci. J. 1 (1967) 83.

    Article  Google Scholar 

  29. M. V. SPEIGHT and W. BEERE, Met. Sci. 9 (1975) 190.

    Article  Google Scholar 

  30. R. RAJ and M. F. ASHBY, Acta. Metall. 23 (1975) 653.

    Article  Google Scholar 

  31. J. W. HANCOCK, Met. Sci. 10 (1976) 319.

    Article  Google Scholar 

  32. F. A. McCLINTOCK, J. Appl. Mech. 35 (1968) 363.

    Article  Google Scholar 

  33. D. A. MILLER and T. G. LANGDON, Met. Trans. 10A (1979) 1869.

    Article  Google Scholar 

  34. Idem., Jpn. Inst. Met. 21 (1980) 123.

    Article  Google Scholar 

  35. H. JONES, Met. Sci. J. 5 (1971) 15.

    Article  Google Scholar 

  36. A. BALL and M. M. HUTCHINSON, ibid. 3 (1969) 1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukhopadhyay, J., Piatti, G. & Mukherjee, A.K. Extended ductility and cavitation in a high manganese stainless steel. J Mater Sci 25, 781–788 (1990). https://doi.org/10.1007/BF03372162

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03372162

Keywords

Navigation