Was bringt ein Oscar im Filmgeschäft? Eine empirische Analyse unter Berücksichtigung des Selektionseffekts

Zusammenfassung

In der Erfolgsfaktorenforschung von Filmen ist immer wieder die Umsatz steigernde Wirkung eines Oscars aufgezeigt worden. Allerdings ist zu vermuten, dass die bisherigen empirischen Ergebnisse aufgrund eines Selektionseffekts verzerrt sind. Im vorliegenden Beitrag wird mit dem „Propensity-Score-Matching-Ansatz” ein Verfahren eingesetzt, welches die Selektivität korrigiert. Die resultierenden Ergebnisse zeigen, dass dann die Nominierung für einen Oscar entgegen bisherigen Vermutungen keinen signifikanten Beitrag zum Gesamtumsatz eines Kinofilmes liefert.

Summary

This article discusses the often ignored impact of sample selection bias in empirical research in business administration. Our empirical application based on the motion picture industry underlines the importance of this procedure. We find a significant impact of a nomination for the Academy Award (Oscar), if we follow the standard estimation procedures from the literature using regression analysis. However, if we correct our sample for the selection bias we do not find a significant impact of an Oscar nomination on box office anymore.

This is a preview of subscription content, log in to check access.

Literaturverzeichnis

  1. AMPAS (2003), 76th Annual Academy Awards — Rules for Distiguished Achievements During 2003, http://www.oscars.org/76academyawards/rules/76_rules.pdf.

  2. Angrist, Joshua D./Krueger, Alan B. (1999), Empirical Strategies in Labor Economics, in: Ashenfelter, Orley/Card, David (Hrsg.), Handbook of Labor Economics, Amsterdam, S. 1739–1863.

    Google Scholar 

  3. Bagella, Michele/Becchetti, Leonardo (1999), The Determinants of Motion Picture Box Office Performance: Evidence from Movies Produced in Italy, in: Journal of Cultural Economics, Vol. 23, S. 237–256.

    Article  Google Scholar 

  4. Basuroy, Suman/Chatterjee, Subimal/Ravid, Abraham S. (2003), How Critical are Critical Reviews? The Box Office Influence of Film Critics, Star-Power, and Budgets, in: Journal of Marketing, Vol. 67 (October), S. 103–117.

    Article  Google Scholar 

  5. Bayus, Barry L. (1985), Word of Mouth: The Indirect Effect of Marketing Efforts, in: Journal of Advertising Research, Vol. 25(3), S. 37–51.

    Google Scholar 

  6. Belsley, David A./Kuh, Edwin/Welsch, Roy E. (1980), Regression Diagnostics. Collinearity and Weak Data in Regression, New York.

    Google Scholar 

  7. Caliendo, Marco/Kopeinig, Sabine (2005), Some Practical Guidance for the Implementation of Propensity Score Matching, IZA Discussionpaper No. 1588, May 2005.

  8. Christensen, Björn (2001), Berufliche Weiterbildung und Arbeitsplatzrisiko: Ein Matching-Ansatz, Kieler Arbeitspapiere 1033, Institut für Weltwirtschaft, Kiel.

    Google Scholar 

  9. Clement, Michel (2004), Erfolgsfaktoren von Spielfilmen im Kino — Eine Übersicht der empirischen betriebswirtschaftlichen Literatur, in: Medien & Kommunikationswissenschaft, 52. Jg., S. 250–271.

    Article  Google Scholar 

  10. Cramer, Jan S. (1999), Predictive performance of the binary logit model in unbalanced samples, in: The Statistician, Vol. 48 (Part 1), S. 85–94.

    Google Scholar 

  11. Deuchert, Eva/Adjamah, Kossi/Pauly, Florian (2005), For Oscar Glory or Oscar Money? Academy Awards and Movie Success, in: Journal of Cultural Economics, Vol. 29 (August), S. 159–176.

    Article  Google Scholar 

  12. Dhar, Ravi/Wertenbroch, Klaus (2000), Consumer Choice Between Hedonic and Utilitarian Goods, in: Journal of Marketing Research, Vol. 37(2), S. 60–71.

    Article  Google Scholar 

  13. Dodds, John C./Holbrook, Morris B. (1988), What’s an Oscar worth? An Empirical Estimation of the Effects of Nominations and Awards on Movie Distribution and Revenues, in: Current Research in Film Audiences, Economics and Law, Vol. 4, S. 72–87.

    Google Scholar 

  14. Elberse, Anita/Eliashberg, Jehoshua (2003), Dynamic Behavior of Consumers and Retailers Regarding Sequentially Released Products in International Markets: The Case of Motion Pictures, in: Marketing Science, Vol. 22, S. 329–354.

    Article  Google Scholar 

  15. Eliashberg, Jehoshua/Shugan, Steven M. (1997), Film Critics: Influences or Predictors?, in: Journal of Marketing, Vol. 61 (April), S. 68–78.

    Article  Google Scholar 

  16. Gensler, Sonja/Skiera, Bernd/Böhm, Martin (2005), Einsatzmöglichkeiten der Matching Methode zur Berücksichtigung von Selbstselektion, in: Journal für Betriebswirtschaft, 55. Jg., S. 37–62.

    Article  Google Scholar 

  17. Greene, William H. (2003), Econometric Analysis, Upper Saddle River/New York.

    Google Scholar 

  18. Haitowski, Yoel (1969), A Note on the Maximization of R2, in: American Statistician, Vol. 23 (February), S. 20–21.

    Google Scholar 

  19. Hansen, Gerd (1987), Multikollinearität und Prognosefehler, in: Jahrbücher für Nationalökonomie und Statistik, 203. Jg., S. 517–531.

    Google Scholar 

  20. Heckman, James J. (1976), The Common Structure of Statistical Models of Truncation, Sample Selection, and Limited Dependent Variables and a Simple Estimator for Such Models, in: Annals of Economic and Social Measurement, Vol. 5, S. 475–492.

    Google Scholar 

  21. Heckman, James J. (1978), Dummy Endogenous Variables in a Simultaneous Equations System, in: Econometrica, Vol. 46, S. 931–960.

    Article  Google Scholar 

  22. Heckman, James J. (1979), Sample Selection Bias as a Specification Error, in: Econometrica, Vol. 47, S. 153–161.

    Article  Google Scholar 

  23. Heckman, James J./Ichimura, Hidehiko/Todd, Petra (1998), Matching as an Econometric Evaluation Estimator, in: Review of Economic Studies, Vol. 65, S. 261–294.

    Article  Google Scholar 

  24. Heckman, James J./Ichimura, Hidehiko/Todd, Petra (1997), Matching as an Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Program, in: Review of Economic Studies, Vol. 64, S. 605–654.

    Article  Google Scholar 

  25. Heckman, James J./LaLonde, Robert J./Smith, Jeffrey A. (1999), The Economics and Econometrics of Active Labor Market Programs, in: Ashenfelter, Orley/Card, David (Hrsg.), Handbook of Labor Economics, Amsterdam, S. 1865–2097.

    Google Scholar 

  26. Heckman, James J./Navarro-Lozano, Salvador (2004), Using Matching, Instrumental Variables, and Control Functions to Estimate Economic Choice Models, in: Review of Economics and Statistics, Vol. 86, S. 30–57.

    Article  Google Scholar 

  27. Hennig-Thurau, Thorsten/Wruck, Oliver (2000), Warum wir ins Kino gehen: Erfolgsfaktoren von Kinofilmen, in: Marketing ZFP, 22. Jg., S. 241–256.

    Article  Google Scholar 

  28. Holbrook, Morris B. (1999), Popular Appeal versus Expert Judgments of Motion Pictures, in: Journal of Consumer Research, Vol. 26 (September), S. 144–155.

    Article  Google Scholar 

  29. Hujer, Reinardt/Maurer, Kai-Oliver/Wellner, Marc (1997), The Impact of Training on Unemployment Duration in West Germany — Combining a Discrete Hazard Rate Model with Matching Techniques, Frankfurter Volkswirtschaftliche Diskussionsbeiträge 74, Universität Frankfurt/Main.

    Google Scholar 

  30. Imbens, Guido W. (2004), Nonparametric Estimation of Average Treatment Effects under Exogeneity: A Review, in: Review of Economics and Statistics, Vol. 86, S. 4–29.

    Article  Google Scholar 

  31. Jedidi, Kamel/Krider, Robert E./Weinberg, Charles B. (1998), Clustering at the Movies, in: Marketing Letters, Vol. 9 S. 393–405.

    Article  Google Scholar 

  32. Kilday, G. (2004), Analysis: Globes still have impact on H’wood, in: The Hollywood Reporter.com, http://www.hollywoodreporter.com/thr/awards/oscars/brief_display. jsp?vnu_content_id=2086500.

  33. Krafft, Manfred (1997), Der Ansatz der Logistischen Regression und seine Interpretation, in: Zeitschrift für Betriebswirtschaft, 67. Jg., S. 625–642.

    Google Scholar 

  34. Langeat, Thierry/Czellar, Sandor/Laurent, Gilles (2003), Engineering Hedonic Attributes to Generate Perceptions of Luxury: Consumer Perception of an Everyday Sound, in: Marketing Letters, Vol. 14(2), S. 97–109.

    Article  Google Scholar 

  35. Lechner, Michael (1998), Training the East German Labour Force. Microeconometric Evaluations of Continuous Vocational Training after Unification, Heidelberg.

    Google Scholar 

  36. Lechner, Michael (2000), A Note on the Common Support Problem in Applied Evaluation Studies, Discussion Paper 2001-01, Department of Economics, University of St. Gallen.

    Google Scholar 

  37. Lechner, Michael (2003), Mikroökonometrische Evaluation arbeitsmarktpolitischer Maßnahmen, in: Franz, Wolfgang/Ramser, Hans Jürgen/Stadler, Manfred (Hrsg.), Empirische Wirtschaftsforschung — Methoden und Anwendungen, Ottobeuren, S. 183–205.

    Google Scholar 

  38. Lechner, Michael/Miquel, Ruth/Wunsch, Conny (2004), Long-run effects of public sector sponsored training in West Germany, Forschungsinstitut zur Zukunft der Arbeit, Discussion Paper Nr. 1443, Bonn.

    Google Scholar 

  39. Levin, Aron M./Levin, Irwin P./Heath, C. Edward (1997), Movie Stars and Authors as Brand Names: Measuring Brand Equity in Experimental Products, in: Advances in Consumer Research, Vol. 24, S. 175–181.

    Google Scholar 

  40. Levy, Emanuel (2001), Oscar Fever — The History and Politics of the Academy Awards, New York.

    Google Scholar 

  41. Litman, Barry R. (1983), Predicting Success of Theatrical Movies: An Empirical Study, in: Journal of Popular Culture, Vol. 16 (Spring), S. 159–175.

    Article  Google Scholar 

  42. Litman, Barry R/Kohl, Linda S. (1989), Predicting Financial Success of Motion Pictures: The 80’s Experience, in: Journal of Media Economics, Vol. 2(2), S. 35–50.

    Article  Google Scholar 

  43. March, James G./Sutton, Robert I. (1997), Organizational performance as a dependent variable, in: Organization Science, Vol. 8, S. 698–706.

    Article  Google Scholar 

  44. Mezias, Stephen J./Kuperman, Jerome C. (2000), The Community Dynamics of Entrepreneurship: The Birth of the American Film Industry, 1895–1929, in: Journal of Business Venturing, Vol. 16(3), S. 209–233.

    Article  Google Scholar 

  45. Nelson, Randy A./Donihue, Michael R./Waldman, Donald M./Wheaton, Calbraith (2001), What’s an Oscar worth?, in: Economic Inquiry, Vol. 39(1), S. 1–16.

    Article  Google Scholar 

  46. Pokorny, Michael/Sedgwick, John (2001), Stardom and the Profitability of Film Making: Warner Bros, in the 1930s, in: Journal of Cultural Economics, Vol. 25, S. 157–184.

    Article  Google Scholar 

  47. Prag, Jay/Casavant, James (1994), An Empirical Study of the Determinants of Revenues and Marketing Expenditures in the Motion Pictures Industry, in: Journal of Cultural Economics, Vol. 18, S. 217–235.

    Article  Google Scholar 

  48. Ravid, Abraham S. (1999), Information, Blockbusters, and Stars: A Study of the Film Industry, in: Journal of Business, Vol. 72, S. 463–492.

    Article  Google Scholar 

  49. Rosenbaum, Paul R./Rubin, Donald B. (1983), The Central Role of the Propensity Score in Observational Studies for Causal Effects, in: Econometrica, Vol. 70, S. 41–55.

    Google Scholar 

  50. Rosenbaum, Paul R./Rubin, Donald B. (1985), Constructing a Control Group Using Multivariate Matched Sampling Methods that Incorporate the Propensity Score, in: The American Statistician, Vol. 39, S. 33–38.

    Google Scholar 

  51. Shaver, J. Myles (1998), Accounting for Endogeneity When Assessing Strategy Performance: Does Entry Mode Choice Affect FDI Survival?, in: Management Science, Vol. 44, S. 571–585.

    Article  Google Scholar 

  52. Simonoff, Jeffrey S./Sparrow, Ilana R. (2000), Predicting movie grosses: Winners and losers, block-busters and sleepers, in: Chance, Vol. 13(3), S. 15–24.

    Article  Google Scholar 

  53. Smith, Jeffrey A./Todd, Petra E. (2005), Does matching overcome LaLonde’s critique of nonexperimental estimators?, in: Journal of Econometrics, Vol. 125, S. 305–353.

    Article  Google Scholar 

  54. Smith, Sharon P./Smith, V. Kerry (1986), Successful Movies: A Preliminary Empirical Analysis, in: Applied Economics, Vol. 18, S. 501–507.

    Article  Google Scholar 

  55. Sochay, Scott (1994), Predicting the Performance of Motion Pictures, in: Journal of Media Economics, Vol. 7(4), S. 1–20.

    Article  Google Scholar 

  56. Strauss, William Victor (1930), Foreign Distribution of American Motion Pictures, in: Harvard Business Review, Vol. 8(3), S. 307–315.

    Google Scholar 

  57. Vella, Francis/Verbeek, Marno (1999), Estimating and Interpreting Models with Endogenous Treatment Effects, in: Journal of Business & Economic Statistics, Vol. 17, S. 473–478.

    Google Scholar 

  58. Vogel, Harold L. (2001), Entertainment Industry Economics, Cambridge.

    Google Scholar 

  59. Wallace, Timothy W./Seigerman, Alan/Holbrook, Morris B. (1993), The Role of Actors and Actresses in the Success of Films: How much is a Movie Star Worth?, in: Journal of Cultural Economics, Vol. 17, S. 1–27.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Professor Dr. Michel Clement.

Additional information

Wir danken den beiden anonymen Gutachtern und dem Herausgeber für die konstruktiven Hinweise während des Begutachtungsprozesses. Ebenfalls danken wir Dr. Sonja Gensler für Kommentare zu früheren Fassungen des Aufsatzes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Clement, M., Christensen, B., Albers, S. et al. Was bringt ein Oscar im Filmgeschäft? Eine empirische Analyse unter Berücksichtigung des Selektionseffekts. Schmalenbachs Z betriebswirtsch Forsch 59, 198–220 (2007). https://doi.org/10.1007/BF03371693

Download citation

JEL-Classification

  • C12
  • M31

Keywords

  • Academy Awards
  • Motion Pictures
  • Propensity-Score-Matching
  • Selection Bias
  • Academy Awards
  • Filmforschung
  • Propensity-Score-Matching
  • Selektionseffekt