Advertisement

Was bringt ein Oscar im Filmgeschäft? Eine empirische Analyse unter Berücksichtigung des Selektionseffekts

  • Michel ClementEmail author
  • Björn Christensen
  • Sönke Albers
  • Steffen Guldner
Filmforschung

Zusammenfassung

In der Erfolgsfaktorenforschung von Filmen ist immer wieder die Umsatz steigernde Wirkung eines Oscars aufgezeigt worden. Allerdings ist zu vermuten, dass die bisherigen empirischen Ergebnisse aufgrund eines Selektionseffekts verzerrt sind. Im vorliegenden Beitrag wird mit dem „Propensity-Score-Matching-Ansatz” ein Verfahren eingesetzt, welches die Selektivität korrigiert. Die resultierenden Ergebnisse zeigen, dass dann die Nominierung für einen Oscar entgegen bisherigen Vermutungen keinen signifikanten Beitrag zum Gesamtumsatz eines Kinofilmes liefert.

Academy Awards Filmforschung Propensity-Score-Matching Selektionseffekt 

Summary

This article discusses the often ignored impact of sample selection bias in empirical research in business administration. Our empirical application based on the motion picture industry underlines the importance of this procedure. We find a significant impact of a nomination for the Academy Award (Oscar), if we follow the standard estimation procedures from the literature using regression analysis. However, if we correct our sample for the selection bias we do not find a significant impact of an Oscar nomination on box office anymore.

Keywords

Academy Awards Motion Pictures Propensity-Score-Matching Selection Bias 

JEL-Classification

C12 M31 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. AMPAS (2003), 76th Annual Academy Awards — Rules for Distiguished Achievements During 2003, http://www.oscars.org/76academyawards/rules/76_rules.pdf.
  2. Angrist, Joshua D./Krueger, Alan B. (1999), Empirical Strategies in Labor Economics, in: Ashenfelter, Orley/Card, David (Hrsg.), Handbook of Labor Economics, Amsterdam, S. 1739–1863.Google Scholar
  3. Bagella, Michele/Becchetti, Leonardo (1999), The Determinants of Motion Picture Box Office Performance: Evidence from Movies Produced in Italy, in: Journal of Cultural Economics, Vol. 23, S. 237–256.CrossRefGoogle Scholar
  4. Basuroy, Suman/Chatterjee, Subimal/Ravid, Abraham S. (2003), How Critical are Critical Reviews? The Box Office Influence of Film Critics, Star-Power, and Budgets, in: Journal of Marketing, Vol. 67 (October), S. 103–117.CrossRefGoogle Scholar
  5. Bayus, Barry L. (1985), Word of Mouth: The Indirect Effect of Marketing Efforts, in: Journal of Advertising Research, Vol. 25(3), S. 37–51.Google Scholar
  6. Belsley, David A./Kuh, Edwin/Welsch, Roy E. (1980), Regression Diagnostics. Collinearity and Weak Data in Regression, New York.Google Scholar
  7. Caliendo, Marco/Kopeinig, Sabine (2005), Some Practical Guidance for the Implementation of Propensity Score Matching, IZA Discussionpaper No. 1588, May 2005.Google Scholar
  8. Christensen, Björn (2001), Berufliche Weiterbildung und Arbeitsplatzrisiko: Ein Matching-Ansatz, Kieler Arbeitspapiere 1033, Institut für Weltwirtschaft, Kiel.Google Scholar
  9. Clement, Michel (2004), Erfolgsfaktoren von Spielfilmen im Kino — Eine Übersicht der empirischen betriebswirtschaftlichen Literatur, in: Medien & Kommunikationswissenschaft, 52. Jg., S. 250–271.CrossRefGoogle Scholar
  10. Cramer, Jan S. (1999), Predictive performance of the binary logit model in unbalanced samples, in: The Statistician, Vol. 48 (Part 1), S. 85–94.Google Scholar
  11. Deuchert, Eva/Adjamah, Kossi/Pauly, Florian (2005), For Oscar Glory or Oscar Money? Academy Awards and Movie Success, in: Journal of Cultural Economics, Vol. 29 (August), S. 159–176.CrossRefGoogle Scholar
  12. Dhar, Ravi/Wertenbroch, Klaus (2000), Consumer Choice Between Hedonic and Utilitarian Goods, in: Journal of Marketing Research, Vol. 37(2), S. 60–71.CrossRefGoogle Scholar
  13. Dodds, John C./Holbrook, Morris B. (1988), What’s an Oscar worth? An Empirical Estimation of the Effects of Nominations and Awards on Movie Distribution and Revenues, in: Current Research in Film Audiences, Economics and Law, Vol. 4, S. 72–87.Google Scholar
  14. Elberse, Anita/Eliashberg, Jehoshua (2003), Dynamic Behavior of Consumers and Retailers Regarding Sequentially Released Products in International Markets: The Case of Motion Pictures, in: Marketing Science, Vol. 22, S. 329–354.CrossRefGoogle Scholar
  15. Eliashberg, Jehoshua/Shugan, Steven M. (1997), Film Critics: Influences or Predictors?, in: Journal of Marketing, Vol. 61 (April), S. 68–78.CrossRefGoogle Scholar
  16. Gensler, Sonja/Skiera, Bernd/Böhm, Martin (2005), Einsatzmöglichkeiten der Matching Methode zur Berücksichtigung von Selbstselektion, in: Journal für Betriebswirtschaft, 55. Jg., S. 37–62.CrossRefGoogle Scholar
  17. Greene, William H. (2003), Econometric Analysis, Upper Saddle River/New York.Google Scholar
  18. Haitowski, Yoel (1969), A Note on the Maximization of R2, in: American Statistician, Vol. 23 (February), S. 20–21.Google Scholar
  19. Hansen, Gerd (1987), Multikollinearität und Prognosefehler, in: Jahrbücher für Nationalökonomie und Statistik, 203. Jg., S. 517–531.Google Scholar
  20. Heckman, James J. (1976), The Common Structure of Statistical Models of Truncation, Sample Selection, and Limited Dependent Variables and a Simple Estimator for Such Models, in: Annals of Economic and Social Measurement, Vol. 5, S. 475–492.Google Scholar
  21. Heckman, James J. (1978), Dummy Endogenous Variables in a Simultaneous Equations System, in: Econometrica, Vol. 46, S. 931–960.CrossRefGoogle Scholar
  22. Heckman, James J. (1979), Sample Selection Bias as a Specification Error, in: Econometrica, Vol. 47, S. 153–161.CrossRefGoogle Scholar
  23. Heckman, James J./Ichimura, Hidehiko/Todd, Petra (1998), Matching as an Econometric Evaluation Estimator, in: Review of Economic Studies, Vol. 65, S. 261–294.CrossRefGoogle Scholar
  24. Heckman, James J./Ichimura, Hidehiko/Todd, Petra (1997), Matching as an Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Program, in: Review of Economic Studies, Vol. 64, S. 605–654.CrossRefGoogle Scholar
  25. Heckman, James J./LaLonde, Robert J./Smith, Jeffrey A. (1999), The Economics and Econometrics of Active Labor Market Programs, in: Ashenfelter, Orley/Card, David (Hrsg.), Handbook of Labor Economics, Amsterdam, S. 1865–2097.Google Scholar
  26. Heckman, James J./Navarro-Lozano, Salvador (2004), Using Matching, Instrumental Variables, and Control Functions to Estimate Economic Choice Models, in: Review of Economics and Statistics, Vol. 86, S. 30–57.CrossRefGoogle Scholar
  27. Hennig-Thurau, Thorsten/Wruck, Oliver (2000), Warum wir ins Kino gehen: Erfolgsfaktoren von Kinofilmen, in: Marketing ZFP, 22. Jg., S. 241–256.CrossRefGoogle Scholar
  28. Holbrook, Morris B. (1999), Popular Appeal versus Expert Judgments of Motion Pictures, in: Journal of Consumer Research, Vol. 26 (September), S. 144–155.CrossRefGoogle Scholar
  29. Hujer, Reinardt/Maurer, Kai-Oliver/Wellner, Marc (1997), The Impact of Training on Unemployment Duration in West Germany — Combining a Discrete Hazard Rate Model with Matching Techniques, Frankfurter Volkswirtschaftliche Diskussionsbeiträge 74, Universität Frankfurt/Main.Google Scholar
  30. Imbens, Guido W. (2004), Nonparametric Estimation of Average Treatment Effects under Exogeneity: A Review, in: Review of Economics and Statistics, Vol. 86, S. 4–29.CrossRefGoogle Scholar
  31. Jedidi, Kamel/Krider, Robert E./Weinberg, Charles B. (1998), Clustering at the Movies, in: Marketing Letters, Vol. 9 S. 393–405.CrossRefGoogle Scholar
  32. Kilday, G. (2004), Analysis: Globes still have impact on H’wood, in: The Hollywood Reporter.com, http://www.hollywoodreporter.com/thr/awards/oscars/brief_display. jsp?vnu_content_id=2086500.
  33. Krafft, Manfred (1997), Der Ansatz der Logistischen Regression und seine Interpretation, in: Zeitschrift für Betriebswirtschaft, 67. Jg., S. 625–642.Google Scholar
  34. Langeat, Thierry/Czellar, Sandor/Laurent, Gilles (2003), Engineering Hedonic Attributes to Generate Perceptions of Luxury: Consumer Perception of an Everyday Sound, in: Marketing Letters, Vol. 14(2), S. 97–109.CrossRefGoogle Scholar
  35. Lechner, Michael (1998), Training the East German Labour Force. Microeconometric Evaluations of Continuous Vocational Training after Unification, Heidelberg.CrossRefGoogle Scholar
  36. Lechner, Michael (2000), A Note on the Common Support Problem in Applied Evaluation Studies, Discussion Paper 2001-01, Department of Economics, University of St. Gallen.Google Scholar
  37. Lechner, Michael (2003), Mikroökonometrische Evaluation arbeitsmarktpolitischer Maßnahmen, in: Franz, Wolfgang/Ramser, Hans Jürgen/Stadler, Manfred (Hrsg.), Empirische Wirtschaftsforschung — Methoden und Anwendungen, Ottobeuren, S. 183–205.Google Scholar
  38. Lechner, Michael/Miquel, Ruth/Wunsch, Conny (2004), Long-run effects of public sector sponsored training in West Germany, Forschungsinstitut zur Zukunft der Arbeit, Discussion Paper Nr. 1443, Bonn.Google Scholar
  39. Levin, Aron M./Levin, Irwin P./Heath, C. Edward (1997), Movie Stars and Authors as Brand Names: Measuring Brand Equity in Experimental Products, in: Advances in Consumer Research, Vol. 24, S. 175–181.Google Scholar
  40. Levy, Emanuel (2001), Oscar Fever — The History and Politics of the Academy Awards, New York.Google Scholar
  41. Litman, Barry R. (1983), Predicting Success of Theatrical Movies: An Empirical Study, in: Journal of Popular Culture, Vol. 16 (Spring), S. 159–175.CrossRefGoogle Scholar
  42. Litman, Barry R/Kohl, Linda S. (1989), Predicting Financial Success of Motion Pictures: The 80’s Experience, in: Journal of Media Economics, Vol. 2(2), S. 35–50.CrossRefGoogle Scholar
  43. March, James G./Sutton, Robert I. (1997), Organizational performance as a dependent variable, in: Organization Science, Vol. 8, S. 698–706.CrossRefGoogle Scholar
  44. Mezias, Stephen J./Kuperman, Jerome C. (2000), The Community Dynamics of Entrepreneurship: The Birth of the American Film Industry, 1895–1929, in: Journal of Business Venturing, Vol. 16(3), S. 209–233.CrossRefGoogle Scholar
  45. Nelson, Randy A./Donihue, Michael R./Waldman, Donald M./Wheaton, Calbraith (2001), What’s an Oscar worth?, in: Economic Inquiry, Vol. 39(1), S. 1–16.CrossRefGoogle Scholar
  46. Pokorny, Michael/Sedgwick, John (2001), Stardom and the Profitability of Film Making: Warner Bros, in the 1930s, in: Journal of Cultural Economics, Vol. 25, S. 157–184.CrossRefGoogle Scholar
  47. Prag, Jay/Casavant, James (1994), An Empirical Study of the Determinants of Revenues and Marketing Expenditures in the Motion Pictures Industry, in: Journal of Cultural Economics, Vol. 18, S. 217–235.CrossRefGoogle Scholar
  48. Ravid, Abraham S. (1999), Information, Blockbusters, and Stars: A Study of the Film Industry, in: Journal of Business, Vol. 72, S. 463–492.CrossRefGoogle Scholar
  49. Rosenbaum, Paul R./Rubin, Donald B. (1983), The Central Role of the Propensity Score in Observational Studies for Causal Effects, in: Econometrica, Vol. 70, S. 41–55.Google Scholar
  50. Rosenbaum, Paul R./Rubin, Donald B. (1985), Constructing a Control Group Using Multivariate Matched Sampling Methods that Incorporate the Propensity Score, in: The American Statistician, Vol. 39, S. 33–38.Google Scholar
  51. Shaver, J. Myles (1998), Accounting for Endogeneity When Assessing Strategy Performance: Does Entry Mode Choice Affect FDI Survival?, in: Management Science, Vol. 44, S. 571–585.CrossRefGoogle Scholar
  52. Simonoff, Jeffrey S./Sparrow, Ilana R. (2000), Predicting movie grosses: Winners and losers, block-busters and sleepers, in: Chance, Vol. 13(3), S. 15–24.CrossRefGoogle Scholar
  53. Smith, Jeffrey A./Todd, Petra E. (2005), Does matching overcome LaLonde’s critique of nonexperimental estimators?, in: Journal of Econometrics, Vol. 125, S. 305–353.CrossRefGoogle Scholar
  54. Smith, Sharon P./Smith, V. Kerry (1986), Successful Movies: A Preliminary Empirical Analysis, in: Applied Economics, Vol. 18, S. 501–507.CrossRefGoogle Scholar
  55. Sochay, Scott (1994), Predicting the Performance of Motion Pictures, in: Journal of Media Economics, Vol. 7(4), S. 1–20.CrossRefGoogle Scholar
  56. Strauss, William Victor (1930), Foreign Distribution of American Motion Pictures, in: Harvard Business Review, Vol. 8(3), S. 307–315.Google Scholar
  57. Vella, Francis/Verbeek, Marno (1999), Estimating and Interpreting Models with Endogenous Treatment Effects, in: Journal of Business & Economic Statistics, Vol. 17, S. 473–478.Google Scholar
  58. Vogel, Harold L. (2001), Entertainment Industry Economics, Cambridge.Google Scholar
  59. Wallace, Timothy W./Seigerman, Alan/Holbrook, Morris B. (1993), The Role of Actors and Actresses in the Success of Films: How much is a Movie Star Worth?, in: Journal of Cultural Economics, Vol. 17, S. 1–27.CrossRefGoogle Scholar

Copyright information

© Schmalenbach-Gesellschaft.eV. 2007

Authors and Affiliations

  • Michel Clement
    • 1
    Email author
  • Björn Christensen
    • 2
  • Sönke Albers
    • 3
  • Steffen Guldner
    • 3
  1. 1.Institut fur Marketing und Medien, Lehrstuhl für Marketing und MedienmanagementUniversität HamburgHamburgDeutschland
  2. 2.Analytix Institut für quantitative Marktforschung & statistische DatenanalyseKielDeutschland
  3. 3.Lehrstuhl für Innovation, Neue Medien und Marketing, Institut für InnovationsforschungChristian-Albrechts-Universität zu KielKielDeutschland

Personalised recommendations