Skip to main content
Log in

Effects of the larval host plant on the supercooling capacity and physiological characteristics of beet armyworm pupae, Spodoptera exigua (Lepidoptera: Noctuidae)

  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

The beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), is a serious economic pest worldwide that overwinters as pupae in temperate regions. There is no information on the relationship between the larval host plant and the cold hardiness of S. exigua pupae (pre-overwintering feeding), whereas the acclimation temperature, thermoperiod, photoperiod, and soil moisture level are known to influence cold hardiness. Larvae incubated at 20, 23, and 26°C with a L12:D12 photoperiod were fed one of four host plants (pakchoi, cabbage, shallot and spinach) to determine the effect of larval host plant on energy reserves, supercooling capacity, and cryoprotectant level of pupae. The interaction between temperature and larval host plant was significant in regard to pupal fresh weight (FW), glycogen, lipid, supercooling point (SCP), body water content (BWC), and glycerol levels. Higher FW and glycerol content and lower SCP of pupae that were fed as larvae on pakchoi were observed at the lowest rearing temperature. Moreover, higher glycogen content of pupae from larvae reared on pakchoi was also observed at the highest rearing temperature. Glycerol and glycogen contents of pupae from larvae fed on pakchoi were negatively correlated with temperature. Our results suggest that S. exigua pupae enhance their low temperature tolerance by decreasing their SCP and accumulating cryoprotectant (i.e., glycerol) allowing the animals to tolerate the harsh environmental conditions of winter, provided that the overwintering generation of larvae fed on suitable host plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Able AJ, Wong LS, Prasad A & O’Hare TJ, 2005. The physiology of senescence in detached pak choy leaves (Brassica rapa var. chinensis) during storage at different temperatures. Posth Biol Technol 35, 271–278.

    CAS  Google Scholar 

  • Atapour M & Moharramipour S, 2009. Changes of cold hardiness, supercooling capacity, and major cryoprotectants in overwintering larvae of Chilo suppressalis (Lepidoptera: Pyralidae). Environ Entomol 38, 260–265.

    Article  CAS  PubMed  Google Scholar 

  • Atapour M & Moharramipour S, 2011. Changes in supercooling point and glycogen reserves in overwintering and lab-reared samples of beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae) to determining of cold hardiness strategy. Appl Entomol Phytopa 78, 199–216.

    Google Scholar 

  • Azidah AA & Sofian-Azirun M, 2006. Life history of Spodoptera exigua (Lepidoptera: Noctuidae) on various host plants. B Entomol Res 96, 613–618.

    Article  CAS  Google Scholar 

  • Bale JS, 1996. Insect cold hardiness: a matter of life and death. Eur J Entomol 93, 369–382.

    Google Scholar 

  • Berkvens N, Bale JS, Berkvens D, Tirry L & De Clercq P, 2010. Cold tolerance of the harlequin ladybird Harmonia axyridis in Europe. J Insect Physiol 56, 438–44.

    Article  CAS  PubMed  Google Scholar 

  • Carrière Y, 1994. Evolution of phenotype variance: non-Mendelian parental in uences on the phenotypic and genotypic components of the life-history traits in a generalist herbivore. Heredity 72, 420–430.

    Article  Google Scholar 

  • Chapman RF, 1998. The insects: structure and function (4th ed.). New York, Cambridge University Press.

    Book  Google Scholar 

  • Cheng WJ, Quan WL, Zheng XL, Lei CL & Wang XP, 2010. Effect of host-plants on cold hardiness of insects. J Environ Entomol 32, 532–537 (in Chinese with English abstract).

    Google Scholar 

  • Denlinger DL & Lee RE Jr, 2010. Low temperature biology of insects. New York, Cambridge University Press.

    Book  Google Scholar 

  • Dong JF, Zhang JH & Wang CZ, 2002. Effects of plant allelochemicals on nutritional utilization and detoxication enzyme activities in two Helicoverpa species. Acta Entomol Sin 45, 296–300.

    CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA & Smith F, 1956. Colorimetric method for determination of sugars and related substances. Anal Chem 28, 350–356.

    Article  CAS  Google Scholar 

  • Grant TN, Dami IE, Ji T, Scurlock D & Streeter J, 2009. Variation in leaf and bud soluble sugar concentration among Vitis genotypes grown under two temperature regimes. Can J Plant Sci 89, 961–968.

    Article  CAS  Google Scholar 

  • Han LZ, Zhai BP & Zhang XX, 2005. Cold hardiness of beet armyworm, Spodoptera exigua (Hübner). Acta Phytophy Sin 32, 169–173 (in Chinese with English abstract).

    Google Scholar 

  • Hayakawa Y & Chino H, 1981. Temperature-dependent interconversion between glycogen and trehalose in diapausing pupae of Philosamia cynthia ricini and pryeri. Insect Biochem 11, 43–47.

    Article  CAS  Google Scholar 

  • He HM, Yang HZ, Xiao L & Xue FS, 2011. Effect of temperature and photoperiod on developmental period and reproduction of Spodoptera exigua. Jiangxi Plant Prot 34, 93–96 (in Chinese with English abstract).

    CAS  Google Scholar 

  • Hopkins RJ, van Dam NM & van Loon JJA, 2009. Role of Glucosinolates in insect-plant relationships and multitrophic interactions. Ann Rev Entomol 54, 57–83.

    Article  CAS  Google Scholar 

  • Kairo MTK & Murphy ST, 1999. Temperature and plant nutrient effects on the development, survival and reproduction of Cinara sp nov., an invasive pest of cypress trees in Africa. Entomol Exp Appl 92, 147–156.

    Article  Google Scholar 

  • Kim Y & Kim N, 1997. Cold hardiness in Spodoptera exigua (Lepidoptera: Noctuidae). Environ Entomol 26, 1117–1123.

    Article  Google Scholar 

  • Kim Y & Song W, 2000a. Indirect chilling injury of Spodoptera exigua in response to long-term exposure to sublethal low temperature. J Asia Pac Entomol 3, 49–53.

    Article  Google Scholar 

  • Kim Y & Song W, 2000b. Effect of thermoperiod and photoperiod on cold tolerance of Spodoptera exigua (Lepidoptera: Noctuidae). Environ Entomol 29, 868–873.

    Article  Google Scholar 

  • Lambdon PW & Hassall M, 2005. How should toxic secondary metabolites be distributed between the leaves of a fastgrowing plant to minimize the impact of herbivory? Funct Ecol 19, 299–305.

    Article  Google Scholar 

  • Liu ZD, Gong PY, Heckel DG, Wei W, Sun JH & Li DM, 2009. Effects of larval host plants on over-wintering dynamics of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). J Insect Physiol 55, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Liu ZD, Gong PY, Wu KJ, Wei W, Sun JH & Li DM, 2007. Effects of larval host plants on over-wintering preparedness and survival of the cotton bollworm, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). J Insect Physiol 53, 1016–1026.

    Article  CAS  PubMed  Google Scholar 

  • Milonas P & Savopoulou-Soultani M, 1999. Cold hardiness in diapause and non-diapause larvae of the summer fruit tortrix, Adoxophes orana (Lepidoptera: Tortricidae). Eur J Entomol 96, 183–187.

    Google Scholar 

  • Nedved O, Lavy D & Verhoef HA, 1998. Modelling the timetemperature relationship in cold injury and effect of hightemperature interruptions in survival in a chill-sensitive collembolan. Funct Ecol 12, 816–824.

    Article  Google Scholar 

  • Park Y & Kim Y, 2013. RNA interference of glycerol biosynthesis suppresses rapid cold hardening of the beet armyworm, Spodoptera exigua. J Exp Biol 216, 4196–4203.

    Article  CAS  PubMed  Google Scholar 

  • Rochefort S, Berthiaume R, Hébert C, Charest M & Bauce É, 2011. Effect of temperature and host tree on cold hardiness of hemlock looper eggs along a latitudinal gradient. J Insect Physiol 57, 751–759.

    Article  CAS  PubMed  Google Scholar 

  • Rüder G, Rahier M & Naisbit RE, 2008. Counterintuitive developmental plasticity induced by host quality. P Roy Soc B Bio 275, 879–885.

    Article  Google Scholar 

  • Saeed S, Sayyed AH & Ahmad I, 2010. Effect of host plants on life-history traits of Spodoptera exigua (Lepidoptera: Noctuidae). J Pest Sci 83, 165–172.

    Article  Google Scholar 

  • Storey KB & Storey JM, 1991. Biochemistry of cryoprotectants. In: Lee RE & Denliger DL (Eds.) 1991: Insects at low temperature. Chapman & Hall, New York. 64-93.

    Google Scholar 

  • Trudeau M, Mauffette Y, Rochefort S, Han E & Bauce É, 2010. Impact of host tree on forest tent caterpillar performance and offspring overwintering mortality. Environ Entomol 39, 498–504.

    Article  CAS  PubMed  Google Scholar 

  • Williams CM, Thomas RH, MacMillan HA, Marshall KE & Sinclair BJ, 2011. Triacylglyceride measurement in small quantities of homogenised insect tissue: comparisons and caveats. J Insect Physiol 57, 1602–1613.

    Article  CAS  PubMed  Google Scholar 

  • Wu JX & Yuan F, 2004. Changes of glycerol content in diapause larvae of the orange wheat blossom midge, Sitodiplosis mosellana Gehin in various seasons. Insect Sci 11, 27–35.

    Article  CAS  Google Scholar 

  • Yocum GD, Buckner JS & Fatland CL, 2011. A comparison of internal and external lipids of nondiapausing and diapause initiation phase adult Colorado potato beetles Leptinotarsa decemlineata. Comp Biochem Physiol B Biochem 159, 163–170.

    Article  Google Scholar 

  • Zachariassen KE, 1985. Physiology of cold tolerance in insects. Physiol Rev 65, 799–832.

    CAS  PubMed  Google Scholar 

  • Zheng XL, 2012. Studies on the cold hardening and overwintering regions of Spodoptera exigua in China. Ph.D. dissertation, Huazhong Agricultural University, Wuhan City, Hubei Province, China.

    Google Scholar 

  • Zheng XL, Cheng WJ, Wang XP & Lei CL, 2011a. Enhancement of supercooling capacity and survival by cold acclimation, rapid cold and heat hardening in Spodoptera exigua. Cryobiology 63, 164–169.

    Article  PubMed  Google Scholar 

  • Zheng XL, Cong XP, Wang XP & Lei CL, 2011b. A review of geographic distribution, overwintering and migration in Spodoptera exigua Hübner (Lepidoptera: Noctuidae). J Entomol Res Soc 13, 39–48.

    Google Scholar 

  • Zheng XL, Cong XP, Wang XP & Lei CL, 2011c. Pupation behaviour, depth, and site of Spodoptera exigua. B Insect 64, 209–214.

    Google Scholar 

  • Zheng XL, Wang P, Cheng WJ, Wang XP & Lei CL, 2012. Projecting over-wintering regions of beet armyworm, Spodoptera exigua in China, using CLIMEX model. J Insect Sci 12, article 13.

  • Zheng XL, Wang P, Cong XP, Lei CL & Wang XP, 2011d. Effects of soil moistures and pupal chamber on overwintering of Spodoptera exigua. Chin J Appl Entomol 48, 126–131 (in Chinese with English abstract).

    Google Scholar 

  • Zheng XL, Wang P, Lei CL, Lu W, Xian ZH & Wang XP, 2013. Effect of soil moisture on overwintering pupae in Spodoptera exigua (Lepidoptera: Noctuidae). Appl Entomol Zool 48, 365–371.

    Article  Google Scholar 

  • Zheng XL, Zhou LJ, Lu W, Xian ZH, Yang ZD, Lei CL & Wang XP, 2014. Cold hardiness mechanisms of third instar larvae in Spodoptera exigua Hübner (Lepidoptera: Noctuidae). Afr Entomol (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, XL., Wang, P., Cheng, WJ. et al. Effects of the larval host plant on the supercooling capacity and physiological characteristics of beet armyworm pupae, Spodoptera exigua (Lepidoptera: Noctuidae). J Plant Dis Prot 121, 202–210 (2014). https://doi.org/10.1007/BF03356512

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03356512

Key words

Navigation