Skip to main content

Aphid resistance in raspberry and feeding behaviour of Amphorophora idaei

Blattlausresistenz der Himbeere und das Saugverhalten von Amphorophora idaei

Abstract

The raspberry aphid Amphorophora idaei is a major pest of the raspberry plant and a vector of different viruses like Raspberry leaf mottle virus (RLMV), Raspberry leaf spot virus (RLSV), Black raspberry necrosis virus (BRNV) and Rubus yellow net virus (RYNV). Aphid resistant raspberry genotypes additionally show a reduced occurrence of viruses, thus the aim of this study was to investigate whether the feeding behaviour of A. idaei differs between aphid resistant and susceptible plants. In a biotest the cultivars (cvs.)‘Titan’,‘Rumiloba’,‘Nootka’,‘Schoenemann’,‘Williamette’ and‘Autumn Bliss’ show different levels of resistance. A significantly lower population was observed after 27 d on the resistant cvs.‘Rumiloba’ and‘Autumn Bliss’ in comparison to the other cultivars tested. The number of aphids on cv.‘Nootka’ was higher than on the resistant cultivars but significantly lower than on the susceptible cvs.‘Titan’,‘Williamette’ and‘Schoenemann’. The feeding behaviour was studied over a period of 12 h on plants of the cvs.‘Rumiloba’,‘Nootka’,‘Schoenemann’ and‘Autumn Bliss’ by using the electrical penetration graph (EPG) technique. Overall between 62% and 68% aphids tested per cultivar made probes on the leaves and penetrated into the phloem. On the resistant cv.‘Rumiloba’ the aphids started to probe considerably later (49.3 min) than on the other cultivars (12.1 to 33.1 min). In contrast, the first probe on‘Rumiloba’ was shorter (2.2 min) than on the resistant cultivars (23.9 to 63.5 min). On average the aphids attained the phloem on the susceptible cv.‘Schoenemann’ considerably earlier (221.1 min) than on the resistant cultivars (349.5 to 370.4 min). On the resistant cv.‘Nootka’ significant differences were found for the duration of phloem salivation (E1-pattern, 810.9 s in comparison to 24.3 to 176.9 s), the number of phloem salivation phases (2.7 in comparison to 0.1 to 0.2) and the number of phloem contacts before the sustainable phloem feeding (> 10 min) started (1.1 in comparison to 0.1 to 0.2). No differences were found between the cultivars for the number and duration of potential drops (cell penetrations) during the pathway to the phloem, analysed during the first 2 hours of the experiments. The obtained results indicate that the probing and feeding behaviour of A. idaei, which is responsible for virus transmission, is not sufficiently different between resistant and susceptible cultivars to be the reason for virus resistance.

Zusammenfassung

Die Große Himbeerlaus Amphorophora idaei ist ein Direktschädling der Himbeere und natürlicher Vektor verschiedener Viren wie des Raspberry leaf mottle virus (RLMV), Raspberry leaf spot virus (RLSV), Black raspberry necrosis virus (BRNV) und Rubus yellow net virus (RYNV). Da blattlausresistente Sorten auch einen verminderten Virusbefall aufweisen, war es Ziel dieser Untersuchungen zu prüfen, ob das Saugverhalten der Aphiden an blattlausresistenten und -anfälligen Sorten Unterschiede aufweist. Die Sorten‚Titan’,‚Rumiloba’,‚Nootka’,‚Schönemann’,‚Williamette’ und‚Autumn Bliss’ zeigten unterschiedliche Resistenzniveaus. Die Sorten‚Rumiloba’ und‚Autumn Bliss’ wiesen nach 27 d einen im Vergleich zu den anderen Sorten signifikant geringeren Befall auf. Auf‚Nootka’ war nach dieser Zeit der Befall höher als auf den beiden resis-tenten Sorten, aber immer noch signifikant geringer als auf den anfälligen Sorten‚Titan’,‚Williamette’ und‚Schönemann’. Mittels der Technik der elektrischen Registrierung des Einstichverhaltens (electrical penetration graph — EPG) wurde das Saugverhalten apterer Weibchen von A. idaei auf Pflanzen der Sorten‚Rumiloba’,‚Nootka’,‚Schönemann’ und‚Autumn Bliss’ über 12 h registriert. Von den maximal 22 untersuchten Läusen/Sorte saugten innerhalb des Untersuchungszeitraumes zwischen 62% und 68% der Tiere an den Blättern und erreichten das Phloem. Auf der Sorte‚Rumiloba’ stachen die Tiere mit 49,3 min im Mittel deutlich später ein als auf den anderen Sorten (12,1 bis 33,1 min). Der erste Probestich war auf‚Rumiloba’ dagegen mit durchschnittlich 2,2 min deutlich kürzer als auf den anderen Sorten (23,9 bis 63,5 min). Im Mittel erreichten die Tiere auf der anfälligen Sorte‚Schönemann’ das Phloem etwas früher (221,1 min) als auf den resis-tenten Sorten (349,5 min bis 370,4 min). An der Sorte‚Nootka’ bestanden im Vergleich zu allen anderen Sorten signifikante Unterschiede hinsichtlich der Dauer der Speichelabgabephasen (E1) in das Phloem (810,9 s gegenüber 24,3 bis 176,9 s), der Häufigkeit dieser Phase (2,7 gegenüber 0,2 bis 0,8) und der Anzahl von Phloemkontakten vor dem Beginn eines dauerhaften Phloemsaugens (1,1 gegenüber 0,1 bis 0,2). Die Anzahl und Dauer von Einstichen in die Zellen während des extrazellulären Vordringens des Stylettbündels zum Phloem zeigten dagegen keine statistisch gesicherten Unterschiede zwischen den Sorten. Die erhaltenen Ergebnisse verdeutlichen, dass sich die für eine Virusübertragung relevanten Parameter im Einstich- und Saugverhalten der Aphiden zwischen den verschiedenen Sorten nicht so weit unterscheiden, um damit eine Virusresistenz zu erklären.

This is a preview of subscription content, access via your institution.

References

  1. Abraham, K., K. Epperlein, 1999: Influence of imidacloprid after seed-treatment of maize on the sucking behaviour of the bird-cherry aphid (Rhopalosiphum padi L.) and on the transmission of BYDV using electrical penetration graph technique in laboratory investigations. Ges. Pfl. 51, 90–94.

    CAS  Google Scholar 

  2. Alvarez, A.E., W.F. Tjallingii, E. Garzo, V. Vleeshouwers, M. Dicke, B. Vosman, 2006: Location of resistance factors in the leaves of potato and wild tuber-bearing Solanum species to the aphid Myzus persicae. Entomol. Exp. Appl. 121, 145–157.

    Article  Google Scholar 

  3. Birch, A.N.E., A.T. Jones, 1988: Levels and components of resistance to Amphorophora idaei in raspberry cultivars containing different resistance genes. Ann. Appl. Biol. 113, 567–578.

    Article  Google Scholar 

  4. Blackman, R.L., V.F. Eastop, M. Hills, 1977: Morphological and cytological separation of Amphorophora Buckton (Homoptera: Aphididae) feeding on European raspberry and blackberry (Rubus spp). B. Entomol. Res. 67, 285–296.

    Article  Google Scholar 

  5. Briggs, J.B., 1965: Distribution, abundance and genetic relationships of 4 strains of rubus aphid (Amphorophora rubi) (Kalt.) in relation to raspberry breeding. J. Hort. Sci. Biotech. 40, 109–117.

    Google Scholar 

  6. Fritzsche, R., E. Karl, W. Lehmann, G. Proeseler, 1972: Tierische Vektoren pflanzenpathogener Viren. Gustav Fischer Verlag, Jena.

    Google Scholar 

  7. Heie, O.E., 1975: Fauna Entomologica Scandinavia: The Aphidoidea (Hemiptera) of Fennoscandia and Denmark. VI. Family Aphididae: Part 3 of Tribe Macrosiphini of subfamily Aphidinae, and family Lachnidae. Brill, Leiden.

    Google Scholar 

  8. Jones, A.T., 1976: Effect of resistance to Amphorophora rubi in raspberry (Rubus idaeus) on spread of aphid-borne viruses. Ann. Appl. Biol. 82, 503–510.

    Article  Google Scholar 

  9. Jaiscones, A.T., 1979: Further studies on the effect of resistance to Amphorophora idaei in raspberry (Rubus idaeus) on the spread of aphid-borne viruses. Ann. Appl. Biol. 92, 119–123.

    Article  Google Scholar 

  10. Jones, A.T., 1986: Advances in the study, detection and control of viruses and virus diseases of Rubus, with particular reference to the United Kingdom. Crop Res. 26, 127–171.

    CAS  Google Scholar 

  11. Klingauf, F.A., 1988a: Feeding, adaptation and excretion. In: Minks, A.K., P. Harrewijn (eds.): World Crop Pests. Aphids. Their Biology, Natural Enemies and Control, Volume B, pp. 225–253. Elsevier, Amsterdam.

    Google Scholar 

  12. Klingauf, F.A., 1988b: Host plant finding and acceptance. In: Minks, A.K., P. Harrewijn (eds.): World Crop Pests. Aphids. Their Biology, Natural Enemies and Control, Volume B, pp. 209–223. Elsevier, Amsterdam.

    Google Scholar 

  13. Martin, B., 1997: Intracellular ingestion and salivation by aphids may cause the acquisition and inoculation of nonpersistently transmitted plant viruses. J. Gen. Virol. 78, 2701–2705.

    CAS  Article  PubMed  Google Scholar 

  14. McLean, D.L., M.G. Kinsey, 1964: Technique for electronically recording of aphid feeding and salivation. Nature 202, 1358–1359.

    Article  Google Scholar 

  15. McMenemy, L.S., C. Mitchell, S.N. Johnson, 2009: Biology of the European large raspberry aphid (Amphorophora idaei): its role in virus transmission and resistance breakdown in red raspberry. Agric. For. Entomol. 11, 61–71.

    Article  Google Scholar 

  16. Moll, E., U. Walther, K. Flath, J. Prochnow, E. Sachs, 1996: Methodische Anleitungen zur Bewertung der partiellen Resistenz und die SAS-Anwendung RESI. Ber. Biol. Bundesanst. Land- Forstwirtsch. 12, 7–20.

    Google Scholar 

  17. Powell, G., 2001: Cell membrane punctures during epidermal penetrations by aphids: consequences for the transmission of two potyvirus. Ann. Appl. Biol. 119, 313–321.

    Article  Google Scholar 

  18. Prado, E., W.F. Tjallingii, 1994: Aphid activities during sieve element punctures. Entomol. Exp. Appl. 72, 157–165.

    Article  Google Scholar 

  19. Robertson, G.W., D.W. Griffiths, A.N.E. Birch, A.T. Jones, J.W. Mcnicol, J.E. Hall, 1991: Further evidence that resistance in raspberry to the virus vector aphid, Amphorophora idaei, is related to the chemical composition of the leaf surface. Ann. Appl. Biol. 119, 443–449.

    Article  Google Scholar 

  20. Shepherd, T., G.W. Robertson, D.W. Griffiths, A.N.E. Birch, 1999a: Epicuticular wax composition in relation to aphid infestation and resistance in red raspberry (Rubus idaeus L.). Phytochemistry 52, 1239–1254.

    CAS  Article  Google Scholar 

  21. Shepherd, T., G.W. Robertson, D.W. Griffiths, A.N.E. Birch, 1999b: Epicuticular wax ester and triacylglycerol composition in relation to aphid infestation and resistance in red raspberry (Rubus idaeus L.). Phytochemistry 52, 1255–1267.

    CAS  Article  Google Scholar 

  22. Symmes, E.J., G.P. Walker, T.M. Perring, 2008: Stylet penetration behavior of Myzus persicae related to transmission of Zucchini yellow mosaic virus. Entomol. Exp. Appl. 129, 258–267.

    Article  Google Scholar 

  23. Thieme, T., F.P. Müller, 2005: Aphidina — Blattläuse. In: B. Klausnitzer, H.-J. Hannemann, K. Senglaub (eds.): Exkursionsfauna von Deutschland. Wirbellose: Insekten, pp. 169–237. Spektrum Akademischer Verlag, München.

    Google Scholar 

  24. Tjallingii, W.F., 1978: Electronic recording of penetration behaviour by aphids. Entomol. Exp. Appl. 24, 721–730.

    Article  Google Scholar 

  25. Tjallingii, W.F., 1985: Electrical nature of recorded signals during stylet penetration by aphids. Entomol. Exp. Appl. 38, 177–186.

    Article  Google Scholar 

  26. Tjallingii, W.F., 1988: Electrical recording of stylet penetration. Aphids, their biology, natural enemies and control. In: Minks, A.K., P. Harrewijn (eds.): World Crop Pests. Aphids. Their Biology, Natural Enemies and Control, Volume B, pp. 95–108. Elsevier, Amsterdam.

    Google Scholar 

  27. Tjallingii, W.F., 2006: Salivary secretions by aphids interacting with proteins of phloem wound responses. J. Exp. Bot. 57, 739–745.

    CAS  Article  PubMed  Google Scholar 

  28. Will, T., W.F. Tjallingii, A. Thonnessen, A.J.E. Van Bel, 2007: Molecular sabotage of plant defense by aphid saliva. Proc. Natl. Acad. Sci. USA 104, 10536–10541.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Schliephake.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schliephake, E. Aphid resistance in raspberry and feeding behaviour of Amphorophora idaei. J Plant Dis Prot 117, 60–66 (2010). https://doi.org/10.1007/BF03356336

Download citation

Key words

  • Amphorophora idaei
  • aphids
  • electrical penetration graph
  • EPG
  • great raspberry aphid
  • probing behaviour
  • raspberry
  • resistance
  • Rubus idaeus

Stichwörter

  • Amphorophora idaei
  • Blattlaus
  • elektrische Registrierung des Einstichverhaltens
  • EPG
  • Himbeere
  • Himbeerlaus
  • Resistenz
  • Rubus idaeus
  • Saugverhalten