Skip to main content
Log in

Effect of downy mildew disease on photosynthesis and chlorophyll fluorescence in Plantago ovata Forsk

Einfluss des Falschen Mehltaus auf Photosynthese und Chlorophyllfluoreszenz von Plantago ovata Forsk

  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Plantago ovata is commercially grown in India for its dietary fibre. The crop is affected by downy mildew caused by Peronospora plantaginis Underwood leading to severe yield loss. A study was undertaken to assess the impact of downy mildew on host photosynthesis under field conditions. The results showed that primary photosynthetic pigments (total chlorophyll) were reduced by 34.74% and 62.11% in slight and severe chlorotic leaves, respectively, compared to healthy leaves. Net photosynthetic rate (Pn) was also significantly reduced in diseased leaves. The diurnal photosynthesis measurement showed that peak Pn in the diseased leaves was short lived as compared to healthy leaves. Infection caused an increase in dark respiration (Rd) and intracellular CO2 concentration (Ci), while stomatal conductance (gs) was similar to that of healthy leaves during peak photosynthetic period of the day. Infection caused a reduction in soluble sugar content accompanied by an increase in leaf starch content. Vitality index (Fv/Fm) of the diseased leaves was reduced by 24.39% in slight chlorotic and 44.90% in severe chlorotic leaves as compared to healthy leaves. Further, quantum yield of photosystem (PS) II (FPSII) showed severe reduction, which was correlated with the Pn. Our study suggests that carbon assimilation in the diseased leaves is mainly limited by PSII function. Disease induced reduction in chlorophyll content appears to be one of the causes for reduction in PSII yield. Increase in starch accumulation in infected leaves appears to be a cause for reduction in photosynthesis in infected leaves.

Zusammenfassung

Das Wegerichgewächs (Fam. Plantaginaceae) Plantago ovata wird in wegen seiner als ballaststoffreiches Nahrungsmittel verwendeten Samenschalen (Isabgol) angebaut. Der Befall der Pflanze mit dem Erreger des Falschen Mehltaus, Peronospora plantaginis Underwood, kann zu bedeutenden Ertragsverlusten führen. Im Feld wurde daher der Einfluss des Erregers auf die Photosynthese des Wirtes untersucht. Der Gesamtchlorophyllgehalt war in leicht und stark chlorotischen Blättern um 34,74 bzw. 62,11% gegenüber nicht befallenen Blättern vermindert. Die Nettophotosyntheserate (Pn) erkrankter Blätter war ebenfalls signifikant reduziert. Messungen diurnaler Veränderungen der Phytosynthese zeigten, dass der Pn-Peak befallener Blätter im Vergleich zu gesunden relativ kurzlebig war. Ein Befall erhöhte sowohl die Dunkelatmung (Rd) als auch die intrazelluläre CO2-Konzentration (Ci), während die stomatäre Leitfähigkeit (gs) in der Periode maximaler photosynthetischer Aktivität keine Unterschiede zu nicht befallenen Blättern aufwies. Befallsbedingt sank der Gehalt löslicher Zucker, während der Stärkegehalt der Blätter stieg. Der Vitalitätsindex (Fv/Fm) befallener Blätter sank gegenüber der Gesundvariante um 24,39% in schwach chlorotischen und um 44,90% in stark chlorotischen Blättern. Die Quantenausbeute des Photosystems (PS) II (FPSII) war in Kor- relation mit Pn stark vermindert. Die Untersuchung deutet darauf hin, dass die photosynthetische Kohlenstoffassimilation befallener Blätter vor allem durch die Funktion des PS II begrenzt wird. Der befallsbedingt verminderte Gehalt an Gesamtchlorophyll scheint die Ausbeute des PS II negativ zu beeinflussen. Die erhöhte Stärkespeicherung erkrankter Blätter scheint sich wiederum negativ auf die Photosyntheseleistung auszuwirken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anonymous, 2007: Health claims: soluble fiber from certain foods and risk of coronary heart disease (CHD) [electronic version], In: Code of Federal Regulations, pp. 442–446. Food and Drug Administration Department of Health and Human Services, Washington, D.C., USA. Retrieved November 28, 2007 from, http://www.access.gpo.gov/nara/cfr/waisidx_07/21cfr101_07.html.

  • Bassanezi, R.B., L. Amorim, A.B. Filho, R.D. Berger, 2002: Gas exchange and emission of chlorophyll fluorescence during the monocycle of rust, angular leaf spot and anthracnose on bean leaves as a function of their trophic characteristics. J. Phytopathol. 150, 1–11.

    Article  Google Scholar 

  • Boote, K.J., J.W. Jones, G.H. Smerage, C.S. Barfield, R.D. Berger, 1980: Photosynthesis of peanut canopies as affected by leaf spot and artificial defoliation. Agron. J. 72, 247–252.

    Article  Google Scholar 

  • Cheng, L-S., L. Cheng, 2004: CO2 assimilation, carbohydrate metabolism, xanthophylls cycle, and the antioxidant system of ‘Honeycrisp’ apple leaves with zonal chlorosis. J. Am. Soc. Hortic. Sci. 129, 729–737.

    Google Scholar 

  • Guo, D-P., Y-P. Guo, J-P. Zhao, H. Liu, Y. Peng, Q-M. Wang, J-S. Chen, G-Z. Rao, 2005: Photosynthetic rate and chlorophyll fluorescence in leaves of stem mustard (Brassica juncea var. tsatsai) after turnip mosaic virus infection. Plant Sci. 168, 57–63.

    Article  CAS  Google Scholar 

  • Habermann, G., E.C. Machado, J.D. Rodrigues, C.L. Medina, 2003: CO2 assimilation, photosynthetic light response curves, and water relations of ‘Pera’ sweet orange plants infected with Xylella fastidiosa. Braz. J. Plant Physiol. 15, 79–87.

    Article  CAS  Google Scholar 

  • Hiscox, J.D., G.F. Israelstam, 1979: A method for the extraction of chlorophyll from leaf tissue without maceration. Can. J. Bot. 57, 1332–1334.

    Article  CAS  Google Scholar 

  • Ingold, C.T., 1960: Dispersal by air and water — the take-off. In: J.G. Horsfall, A.E. Dimond (eds.): Plant Disease, an Advanced Treatise Vol. 3, pp. 137–168. Academic Press, New York.

    Google Scholar 

  • Ingram, D.S., 1981: Physiology and biochemistry of hostparasite interaction. In: D.M. Spencer (ed.): The Downy Mildews, pp. 143–163. Academic Press, London.

    Google Scholar 

  • Lindenthal, M., U. Steiner, H.-W. Dehne, E.-C. Oerke, 2005: Effect of downy mildew development on transpiration of cucumber leaves visualized by digital infrared thermography. Phytopathology 95, 233–240.

    Article  PubMed  Google Scholar 

  • Livne, A., 1964: Photosynthesis in healthy and rust affected plants. Plant Physiol. 39, 614–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes, D.B., R.D. Berger, 2001: The effects of rust and anthracnose on the photosynthetic competence of diseased bean leaves. Phytopathology 91, 212–220.

    Article  CAS  PubMed  Google Scholar 

  • Mahadevan, A., R. Sridhar, 1982: Methods in Physiological Plant Pathology, 2nd edition. Sivakami Publications, Chennai, India.

    Google Scholar 

  • Mandal, K., N.A. Gajbhiye, S. Maiti, 2007: Fungicidal management of downy mildew of isabgol simulating farmers’ field-conditions. Australas. Plant Pathol. 36, 186–190.

    Article  CAS  Google Scholar 

  • Maxwell, K., G.N. Johnson, 2000: Chlorophyll fluorescence — a practical guide. J. Exp. Bot. 51, 659–668.

    Article  CAS  PubMed  Google Scholar 

  • Miller, G.L., 1972: Use of dinitrosalicyclic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428.

    Article  Google Scholar 

  • Moll, S., P. Serranoo, C. Boyle, 1995: In vivo chlorophyll fluorescence in rust-infected bean plants. Angew. Bot. 69, 163–168.

    CAS  Google Scholar 

  • Moriondo, M., S. Orlandini, A. Giuntoli, M. Bindi, 2005: The effect of downy and powdery mildew on grapevine (Vitis vinifera L.) leaf gas exchange. J. Phytopathol. 153, 350–357.

    Article  Google Scholar 

  • Raggi, V., 1978: The CO2 compensation point, photosynthesis and respiration in rust infected bean leaves. Physiol. Plant Pathol. 13, 135–139.

    Article  Google Scholar 

  • Scholes, J.D., S.A. Rolfe, 1995: How do biotrophic pathogens affect the photosynthetic metabolism of their host? Asp. Appl. Biol. 42, 91–99.

    Google Scholar 

  • Sharma, M.P., D. Rajpurohit, 2004: Biochemical alterations in isabgol leaves in response to fungicidal control of downy mildew. J. Mycol. Plant Pathol. 34, 130–132.

    Google Scholar 

  • Shtienberg, D., 1992: Effects of foliar diseases on gas exchange processes: a comparative study. Phytopathology 82, 760–765.

    Article  Google Scholar 

  • Srinivasan, N., R. Jeyarajan, 1977: Grape downy mildew in India. IV. Effect of infection on sugars content and respiration in leaves. Indian J. Hortic. 34, 209–214.

    Google Scholar 

  • Thornton, J.D., R.C. Cooke, 1974: Changes in respiration, chlorophyll content and soluble carbohydrates of detached cabbage cotyledons following infection with Peronospora parasitica (Pers. ex Fr.) Physiol. Plant Pathol. 4, 117–125.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Maiti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, K., Saravanan, R., Maiti, S. et al. Effect of downy mildew disease on photosynthesis and chlorophyll fluorescence in Plantago ovata Forsk. J Plant Dis Prot 116, 164–168 (2009). https://doi.org/10.1007/BF03356305

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03356305

Key words

Stichwörter

Navigation