Skip to main content
Log in

Field release of a non-toxigenic Aspergillus flavus L strain in central Benin

Feldapplikationen von nicht-toxischen Aspergillus flavus L Stämmen in Zentralbenin

  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

Non-toxigenic strains of Aspergillus flavus (Link) can be used as biological control agents to reduce the contamination of grains such as maize with carcinogenic and immunotoxic aflatoxins. Based on its sclerotial morphology, A. flavus is commonly divided into two types: L strains and S strains. In this study, we applied the non-toxigenic A. flavus L strain BN030D to the soil of five maize fields in Djidja, central Benin, to investigate its effects on the composition of the prevailing fungal communities, on the ratio of A. flavus L strains and S strains, and on the vegetative compatibility of L strains with BN030D. Soil samples were taken before the strain application, and soil and cob samples were taken after BN030D treatment, i.e., at maize harvest. BN030D did not affect the composition of A. flavus, Fusarium spp., Penicillium spp. and A. niger in the soil. There was no significant difference between the number of A. flavus L and S strains in the control and (subsequent) treatment plots before treatment, but significantly more L than S strains in soil and maize after BN030D treatment. About 1% of all L strains isolated from the untreated soil samples were vegetatively compatible to BN030D, confirming the natural presence of the non-toxigenic A. flavus L strain in the study area. Additionally, 59% (soil) and 26% (maize) of all strains isolated from the treated samples belonged to the BN030D vegetative compatibility group. BN030D spread over time and space from the release area into the non-treated buffer area. The implications of these findings for strategies to reduce aflatoxin contamination of maize and the potentials of such a competitive replacement approach for biological control of A. flavus in West Africa are discussed.

Zusammenfassung

Aspergillus flavus (Link)Infektionen von Maispflanzen können zur Kontamination der Körner mit krebserregenden und immunotoxischen Aflatoxinen führen. A. flavus wird auf Grund der Morphologie seiner Sklerotien in so genannte L und S Stämme aufgeteilt. In der vorliegenden Studie wurde der nicht-toxische A. flavus L Stamm BN030D als Bodenappli-kation in fünf Maisfeldern in Djidja, Zentralbenin, freigesetzt, um Effekte bezüglich der Zusammensetzung der vorhande-nen Pilze, der Relation zwischen A. flavus L und S Stämmen und der vegetativen Kompatibilität der L Stämme mit BN030D zu untersuchen. Dazu wurden Bodenproben sowohl vor der Stammapplikation genommen, also auch zusammen mit Proben der Maiskolben bei der Ernte. Die Zusammen-setzung der Arten A. flavus, Fusarium und Penicillium spp. und A. niger innerhalb der Bodenproben wurden durch das Ausbringen des nicht-toxischen A. flavus L Stammen nicht verändert. Vor der Applikation von BN030D konnten zwi-schen Kontroll- und Behandlungsflächen keine signifikanten Unterschiede im Verhältnis der A. flavus L und S Stämme ge-funden werden. Nach der Ausbringung von BN030D konnten jedoch in zwei Behandlungsparzellen signifikant mehr L als S Stämme in Boden- bzw. Maisproben verzeichnet werden. Innerhalb der A. flavus L Stämme, konnte bei ca. 1% aller Isolate der Bodenproben, die vor der Applikation von BN030D genommen wurden, eine vegetative Kompatibilität mit BN030D festgestellt werden, was die natürliche Herkunft des nicht-toxischen A. flavus L Stammes BN030D im Unter-suchungsgebiet beweist. In den Behandlungsparzellen zur Erntezeit, konnte bei 59% bzw. 26% aller Isolate der Boden-bzw. Maisproben eine vegetative Kompatibilität mit dem Stamm BN030D festgestellt werden. Darüber hinaus wurde die Ausbreitung von BN030D von den Behandlungsparzellen in eine Pufferzone in Zeit und Raum dargestellt. Die Bedeu-tung dieser Ergebnisse werden bezüglich einer möglichen Reduktion von Aflatoxin-kontaminierten Maiskolben und bezüglich der möglichen Nutzung des Ansatzes der konkur-renzbetonten Verdrängung für die biologische Bekämpfung von A. flavus in Westafrika diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adhikari, M., G. Ramjee, P. Berjak, 1994: Aflatoxin, Kwash-iorkor and Morbidity. Nat. Toxins 2, 1–3.

    Article  CAS  PubMed  Google Scholar 

  • Bock, C.H., P.J. Cotty, 1999: Wheat seed colonized with atoxigenic Aspergillus flavus: Characterization and production of a bio-pesticide for aflatoxin control. Biocontrol Sci. Technol. 9, 529–543.

    Article  Google Scholar 

  • Brown, R.L., P.J. Cotty, T.E. Cleveland, 1991: Reduction in aflatoxin content of maize by atoxigenic strains of Aspergillus flavus. J. Food Protect. 54, 623–626.

    CAS  Google Scholar 

  • Cardwell, K.F., P.J. Cotty, 2002: Distribution of Aspergillus section flavi among field soils from the four agro-ecological zones of the republic of Benin, West Africa. Plant Dis. 86, 434–439.

    Article  Google Scholar 

  • Cardwell, K.F., S.H. Henry, 2004: Risk of exposure to and mitigation of effect of aflatoxin on human health: a West African example. J. Toxicol–Toxin Rev. 23, 217–247.

    CAS  Google Scholar 

  • Cotty, P.J., 1989: Virulence and cultural characteristics of two Aspergillus flavus strains pathogenic on cotton. Phytopathology 79, 808–814.

    Article  Google Scholar 

  • Cotty, P.J., 1990: Effect of atoxigenic strains of Aspergillus flavus on aflatoxin contamination of developing cottonseed. Plant Dis. 74, 233–235.

    Article  CAS  Google Scholar 

  • Cotty, P.J., 1994: Influence of field application of an atoxigenic strain of Aspergillus flavus on the population of A. flavus infecting cotton bolls and on the aflatoxin content of cottonseed. Phytopathology 84, 1270–1277.

    Article  Google Scholar 

  • Cotty, P.J., 1997: Aflatoxin-producing potential of communities of Aspergillus section flavi from cotton producing areas in the United States. Mycol. Res. 101, 698–704.

    Article  Google Scholar 

  • Cotty, P.J., K.F. Cardwell, 1999: Divergence of West African and North American communities of Aspergillus section fla vi. Appl. Environ. Microbiol. 5, 2264–2266.

    Google Scholar 

  • Cotty, P.J., P. Bayman, D.S. Egel, K.S. Elias, 1994: Agriculture, aflatoxins and Aspergillus. In: K.A. Powell, A. Renwick, J.F. Peberdy (eds.): The Genus Aspergillus: From Taxonomy and Genetics to Industrial Application, pp. 1–27. Plenum Press, New York.

    Chapter  Google Scholar 

  • Cove, D.J., 1976: Chlorate toxicity in Aspergillus nidulans–selection and characterization of chlorate resistant mutants. Heredity 36, 191–203.

    Article  CAS  PubMed  Google Scholar 

  • Cytel Cooperation, 2008: The StatXact User Manual. www.cytel.com/home/default.asp. Status: April, 2008

  • Domsch, K.H., W. Gams, T.-H. Anderson, 2007: Compendium of Soil Fungi. Vol. 7. Iwh-Verlag, Eching, Germany.

    Google Scholar 

  • Dorner, J.W., R.J. Cole, P.D. Blankenship, 1992: Use of bio-competitive agent to control pre-harvest aflatoxin in drought stressed peanuts. J. Food Protect. 55, 888–892.

    CAS  Google Scholar 

  • Dorner, J.W., R.J. Cole, D.T. Wicklow, 1999: Aflatoxin reduction in corn through field application of competitive fungi. J. Food Protect. 62, 650–656.

    CAS  Google Scholar 

  • FAO, 2008: Provisional 2004 Production Data. Agricultural Production, Crops Primary. http://apps.fao.org/faostat. Status: April, 2008.

    Google Scholar 

  • Hell, K., K.F. Cardwell, M. S Étamou, H.-M. Poehling, 2000: The influence of storage practices on aflatoxin contamination in maize in four agro-ecological zones of Benin, West Africa. J. Stored Prod. Res. 36, 365–382.

    Article  CAS  PubMed  Google Scholar 

  • Klich, M.A., J.I. Pitt, 1988: A Laboratory Guide to the Common Aspergillus Species and their Teleomorphs. Commonwealth Scientific and Industrial Research Organization, Division of Food Processing, Csiro, North Ryde, Australia.

    Google Scholar 

  • Morris, C.E., M. Bardin, O. Berge, P. FREY-KLETT, N. FROMIN, H. GIRARDIN, M.H. GUINEBRETERE, P. LEBARON, J.M. THIERY, M. TROUSSELLIER, 2002: Microbial biodiversity: Approaches to experimental design and hypothesis testing in primary scientific literature from 1975 to 1999: Microbiol. Mol. Biol. Rev. 66, 592.

  • Orum, T.V., D.M. Bigelow, M.R. Nelson, 1997: Spatial and temporal patterns of Aspergillus flavus strain composition and propagule density in Yuma Country, Arizona, soils. Plant Dis. 81, 911–916.

    Article  Google Scholar 

  • Pflüger, R., T. Hothorn, 2002: Assessing equivalence tests with respect to their expected p-value. Biometrical J. 44, 1015–1027.

    Article  Google Scholar 

  • R, 2008: The R Project for Statistical Computing. http://www.r-project.org/index.html. Status: April, 2008.

    Google Scholar 

  • Sétamou, M., K.F. Cardwell, F. Schulthess, K. Hell, 1997: Aspergillus flavus infection and aflatoxin contamination of pre-harvest maize in Benin. Plant Dis. 81, 1323–1327.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Klueken.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klueken, A.M., Borgemeister, C. & Hau, B. Field release of a non-toxigenic Aspergillus flavus L strain in central Benin. J Plant Dis Prot 116, 17–22 (2009). https://doi.org/10.1007/BF03356281

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03356281

Key words

Stichwörter

Navigation