Skip to main content
Log in

Evaluation of a method for quantification of Pythium aphanidermatum in cucumber roots at different temperatures and inoculum densities

Evaluierung einer Methode zur Quantifizierung von Pythium aphanidermatum in Gurkenwurzeln bei verschiedenen Temperaturen und Inokulumdichten

  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

A method for the quantification of Pythium aphanidermatum density in cucumber roots based on an indirect enzyme-linked immunosorbent assay (Elisa) was established and tested. This approach was applied in three experiments under various environmental conditions. In addition, different inoculum densities were applied to vary the disease severity but also, to search for suitable inoculum densities in long-term epidemiological studies. Cucumber plants were grown in containers with aerated nutrient solution in a growth chamber at air temperatures of 15, 20, 25 and 30°C, and were inoculated with 0, 10, 103 and 105 oospores of P. aphanidermatum per litre nutrient solution. The pathogen density in the roots increased with inoculum density and temperature and resulted in growth reduction of the cucumber plants. Clearly, low temperatures delayed the development of the disease in the plant, while high temperatures combined with high inoculum densities led to sudden death of some plants. Therefore, inoculum densities not higher than 103 oospores per litre should be applied in long-term experiments. Independent of inoculum density and temperature, correlations were established between the mycelium density in the roots and the crop biomass, indicating that the indirect Elisa produces robust estimates of P. aphanidermatum density in cucumber roots under various conditions.

Zusammenfassung

Eine Methode zur Bestimmung der Dichte von Pythium Aphanidermatum in Gurkenwurzeln wurde durch Anwendung eines indirekten enzyme-linked immunosorbent assay (ELISA) entwickelt und in drei Experimenten mit unterschiedlichen klimatischen Bedingungen getestet. Dabei wurde auch die Inokulumdichte variiert, um weitere Abstufungen der Erkrankung zu erhalten, aber auch, um geeignete Inokulumdichten für Langzeitstudien zur Epidemiologie herauszufinden. Gurkenpflanzen wurden in Gefäýen mit belüfteter Nährlösung in Klimakammern bei Lufttemperaturen von 15, 20, 25 und 30°C kultiviert und mit 0, 10, 103 and 105 Oosporen von P. aphanidermatum pro Liter Nährlösung inokuliert. Die Pathogendichte in der Wurzel stieg mit der Inokulumdichte und der Temperatur, wodurch sich das Wachstum der Pflanzen verringerte. Bei 20°C war die Krankheitsentwicklung deutlich verzögert, während 25 und 30°C in Kombination mit hoher Inokulumdichte zum vorzeitigen Absterben einiger Pflanzen führten. Deshalb sollten Inokulumdichten von mehr als 103 Oosporen je Liter in Langzeitexperimenten nicht verwendet werden. Über alle Inokulumdichten und Temperaturen wurden Korrelationen zwischen der Myzeldichte in der Wurzel und der Pflanzenbiomasse gefunden. Diese Korrelationen zeigen, dass der indirekte ELISA eine robuste Schätzung der Dichte von P. aphanidermatum in Gurkenwurzeln unter verschieden Bedingungen liefert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Ali-Shtayeh, M.S., J.D. Macdonald, J. Kabashima, 1991: A method for using commercial ElisA tests to detect zoospores of Phytophthora and Pythium species in irrigation water. Plant Dis. 75, 305–311.

    Article  CAS  Google Scholar 

  • Ben-Yephet, Y., E.B. Nelson, 1999: Differential suppression of damping-off caused by Pythium aphanidermatum, P. irregulare, and P. myriotylum in composts at different temperatures. Plant Dis. 83, 356–360.

    Article  Google Scholar 

  • De Kreij, C., W. Voogt, A.L. van den Bos, R. Baas, 1997: Nutrient solutions for the growth of tomato in closed systems (In Dutch). Proefstation voor Bloemistrij en Glasgroente. Naaldwijk, The Netherlands.

    Google Scholar 

  • Ehret, D.L., B. Alsanius, W. Wohanka, J.G. Menzies, R. Utkhede, 2001: Disinfestation of recirculating nutrient solutions in greenhouse horticulture. Agronomie 21, 323–339.

    Article  Google Scholar 

  • Elad, Y., I. Chet, 1987: Possible role of competition for nutrients in biocontrol of Pythium damping-off by bacteria. Phytopathology 77, 190–195.

    Article  Google Scholar 

  • Estrada-Garcia, M.T., J.R. Green, J.M. Booth, J.G. White, J.A. Callow, 1989: Monoclonal antibodies to cell surface components of zoospores and cysts of the fungus Pythium aphanidermatum reveal species specific antigens. Exp. Mycol. 13, 348–355.

    Article  Google Scholar 

  • Gabler, J., M. Urban, 1995: Evaluation of resistance differences between tomato cultivars of Phytophthora nicotianae by indirect ElisA. Z. Pflanzenkrankh. Pflanzensch. — J. Plant Dis. Protect. 102, 275–283.

    Google Scholar 

  • Gold, S.E., M.E. Stanghellini, 1985: Effects of temperature on Pythium root rot of spinach grown under hydroponic conditions. Phytopathology 75, 333–337.

    Article  Google Scholar 

  • Grosch, R., D. Schwarz, 1998: The effects of an infection by Pythium aphanidermatum on root morphology of tomato. (In German) In: Merbach, W. (ed.): 8th Borkheider Seminar on Ecophysiology of the Rhizosphere, pp. 65–72. B.G. Teubner, Stuttgart and Leipzig.

    Google Scholar 

  • Jenkins, S.F., C.W. Averre, 1983: Root diseases of vegetable in hydroponic culture systems in North Carolina greenhouses. Plant Dis. 67, 968–970.

    Article  Google Scholar 

  • Kageyama, K., M. Kobayashi, M. Tomita, N. Kubota, H. Suga, M. Haykumachi, 2002: Production and evolution of monoclonal antibodies for the detection of Pythium sulcatum in Soil. J. Phytopathol. 150, 97–104.

    Article  CAS  Google Scholar 

  • Kläring, H.-P., R. Grosch, E. Nederhoff, D. Schwarz, 2001: A model approach to describe the effect of root pathogens on plant growth and yield. Acta Hortic. 548, 235–241.

    Article  Google Scholar 

  • Lyons, N.F., J.G. White, 1992: Detection of Pythium violae and Pythium sulcatum in carrots with cavity spot using competition Elisa. Ann. Appl. Biol. 120, 235–244.

    Article  Google Scholar 

  • Macdonald, J.D., J. Stites, J. Kabashima, 1990: Comparison of serological and culture plate methods for detecting species of Phytophthora, Pythium and Rhizoctonia in ornamental plants. Plant Dis. 74, 655–659.

    Article  Google Scholar 

  • Marcelis, L.F.M., 1996: Sink strength as a determinant of dry matter partitioning in the whole plant. J. Exp. Bot. 47, 1281–1291.

    Article  CAS  PubMed  Google Scholar 

  • Martin, F.N., J.E. Loper, 1999: Soilborne plant diseases caused by Pythium spp.: ecology, epidemiology, and prospects for biological control. Crit. Rev. Plant Sci. 18, 111–181.

    Article  CAS  Google Scholar 

  • Mccullagh, M., R. Utkhede, J.G. Menzies, Z.K. Punja, T.C. Paulitz, 1996: Evaluation of plant growth-promoting rhizo-bacteria for biological control of Pythium root rot of cucumbers grown in rockwool and effects on yield. Eur. J. Plant Pathol. 10 2, 747–755.

    Article  Google Scholar 

  • Menzies, J.G., D.L. Ehret, S. Stan, 1996: Effect of inoculum density of Pythium aphanidermatum on the growth and yield of cucumber plants grown in recirculating nutrient film culture. Can. J. Plant Pathol. 18, 50–54.

    Article  Google Scholar 

  • Moulin, E., P. Lemanceau, C. Alabouvette, 1994: Pathogenicity of Pythium species on cucumber in peat-sand, rockwool and hydroponics. Eur. J. Plant Pathol. 100, 3–17.

    Article  Google Scholar 

  • Moulin, E., P. Lemanceau, C. Alabouvette, 1996: Suppression of Pythium root rot of cucumber by a fluorescent Pseudomonad is related to reduced root colonization by Pythium aphani-dermatum. J. Phytopathol. 14 4, 125–129.

    Article  Google Scholar 

  • Otten W., C. A. G illigan, C.R. Thornton, 1997: Quantification of fungal antigens in soil with monoclonal antibody-based Elisa: Analysis and reduction of soil-specific bias. Phytopathology 87, 730–736.

    Article  CAS  PubMed  Google Scholar 

  • Owen-Going, N., J.C. Sutton, B. Grodzinski, 2003: Relationships of Pythium isolates and sweet pepper plants in single-plant hydroponic units. Can. J. Plant Pathol. 25, 155–167.

    Article  Google Scholar 

  • Panova, G.G., D. Grote, H.-P. Kläpring, 2004: Population dynamics of Pythium aphanidermatum and response of tomato plants as affected by root-zone temperature. Z. Pflanzen-krankh. Pflanzensch. — J. Plant Dis. Protect. 111, 52–63.

    Article  Google Scholar 

  • Paternotte, S.J., 1992: Influence of growing conditions on disease development of Pythium in glasshouse cucumbers on rockwool. Meded. Fac. Landbouwwet. Rijksuniv. Gent 57, 373–379.

    Google Scholar 

  • Paulitz, T.C., 2000: Population dynamics of biocontrol agents and pathogens in soils and rhizospheres. Eur. J. Plant Pathol. 106, 401–413.

    Article  Google Scholar 

  • Paulitz, T.C., R.R. Belanger, 2001: Biological control in greenhouse systems. Annu. Rev. Phytopathol. 39, 103–133.

    Article  CAS  PubMed  Google Scholar 

  • Postma, J., P.J.M. Bonants, E. van Os, 2001: Population dynamics of Pythium aphanidermatum in cucumber grown in closed systems. Meded. Fac. Landbouwwet. Rijksuniv. Gent 64, 431–440.

    Google Scholar 

  • Punja, Z.K., R. Yip, 2003: Biological control of damping-off and root rot caused by Pythium aphanidermatum on greenhouse cucumbers. Can. J. Plant Pathol. 25, 411–417.

    Article  Google Scholar 

  • Raftoyannis, Y., M.W. Dick, 2002: Effects of inoculum density, plant age and temperature on disease severity caused by pythiaceous fungi on several plants. Phytoparasitica 30, 67–76.

    Article  Google Scholar 

  • Shane, W. W. 1991: Prospects for early detection of Pythium blight epidemics on turfgrass by antibody-aided monitoring. Plant Dis. 75, 921–925.

    Article  Google Scholar 

  • Stanghellini, M.E., L.J. Stowell, W.C. Kronland, P. Bretzel, 1983: Distribution of Pythium aphanidermatum in rhizo-sphere soil and factors affecting expression of the absolute inoculum potential. Phytopathology 73, 1463–1466.

    Article  Google Scholar 

  • Stanghellini, M.E., S.L. Rasmussen, 1994: Hydroponics: a solution for zoosporic pathogens. Plant Dis. 78, 1129–1138.

    Article  Google Scholar 

  • Stanghellini, M.E., S.L. Rasmussen, D.H. Kim, P.A. Rorabaugh, 1996: Efficacy of nonionic surfactants in the control of zoospore spread of Pythium aphanidermatum in a recirculating hydroponic system. Plant Dis. 80, 422–428.

    Article  CAS  Google Scholar 

  • Takenaka, S., M. Arai, 1993: Dynamics of three snow mold pathogens Pythium paddicum, Pythium iwayamai, and Typhula incarnata in barley plant tissues. Can. J. Bot. 71, 757–763.

    Article  Google Scholar 

  • Thornton, C.R., T.M. O’Neill, G. Hilton, C.A. Gilligan, 1999: Detection and recovery of Rhizoctonia solani in naturally infested glasshouse soil using a combined baiting, double monoclonal antibody Elisa. Plant Pathol. 48, 627–634.

    Article  Google Scholar 

  • Utkhede, R.S., C.A. Levesque, D. Dinh, 2000: Pythium aphani-dermatum root rot in hydroponically grown lettuce and the effect of chemical and biological agents on its control. Can. J. Plant Pathol. 22, 138–144.

    Article  Google Scholar 

  • Yuen, G.Y., M.L. Craig, F. Avila, 1993: Detection of Pythium ultimum with a species-specific monoclonal antibody. Plant Dis. 77, 692–698.

    Article  CAS  Google Scholar 

  • Yuen, G.Y., J.O. Xia, C.L. Sutula, 1998: A sensitive ElisA for Pythium ultimum using polyclonal and species-specific monoclonal antibodies. Plant Dis. 82, 1029–1032.

    Article  Google Scholar 

  • Zheng, J., J.C. Sutton, H. Yu, 2000: Interactions among Pythium aphanidermatum, roots, root mucilage, and microbial agents in hydroponic cucumbers. Can. J. Plant Pathol. 22, 368–379.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-P. Kläring.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyuchukova, M.A., Büttner, C., Gabler, J. et al. Evaluation of a method for quantification of Pythium aphanidermatum in cucumber roots at different temperatures and inoculum densities. J Plant Dis Prot 113, 113–119 (2006). https://doi.org/10.1007/BF03356167

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03356167

Keywords

Stichwörter

Navigation