Skip to main content
Log in

Environment, application, cost and future

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Are composites subject to corrosion, erosion, and thermal condi tions? … Will costs continue to decrease? … Some unsolved prob lems still exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Toy, A., Atteridge, G.D., and Sinizer, D.I.; “Development and Evaluation of the Diffusion Bonding Process”, AFML-TR-66-350, Nov. 1966.

    Google Scholar 

  2. Davis, L.W.; “Aluminum-Boron Composites”, 14th Refractory Composites Meeting, AFML-TR-62-129, p. 201, Aug. 1968.

  3. Kreider, K.G., and Leverant, G.R.; “Boron Fiber Metal Matrix Composites by Plasma Spraying”, AFML-TR-66-219, July 1966.

    Google Scholar 

  4. Cunningham, A.L., and Alexander, J.A.; “The Fabrication Evaluation and Mechanical Properties of Aluminum Matrix Composites”, Advances in Structural Composites, Society of Aerospace Material and Process Engineers, Western Periodicals Co., N. Hollywood, Calif., Vol. 12, paper AC-15. Oct. 1967.

    Google Scholar 

  5. Wolff, E.G., and Hill, R.J.; “Research on Boron Filament/Metal Matrix Composite Materials”, AFML-TR-67-140, June 1967.

    Google Scholar 

  6. Stuhrke, W.F.; “The Mechanical Behavior of Aluminum-Boron Composite Materials”, Metal Matrix Composites, ASTM STP-438, p. 108, 1968.

    Google Scholar 

  7. Conliffe, C.H.; “Advance Composite Material in Turbo Machinery Components”, AFML-TR-68-366. Vol. I & II, Feb. 1969.

    Google Scholar 

  8. Joseph, E.; “Processing Parameters for Diffusion-Bonded Al-Boron Filament Composites”, thesis, Air Force Institute of Technology, GAW-B/Mich 67-9.

  9. Sumner, E.V.; “The Effect of Heat Treatment on the Physical Properties of Some Boron-Aluminum Alloy Matrix Composites”, Advances in Structural Composites, SAMPE Vol. 12, Western Periodicals, N. Hollywood, Calif., paper AC-19.

  10. Antony, K.C., and Chang, W.H.; “Mechanical Properties of Al-B Composites”, Trans. ASM, Vol. 61, no. 3, p. 550, Sept. 1968.

    Google Scholar 

  11. Toth, I.J.; “Creep and Fatigue Behavior of Unidirectional and Cross Plied Composites”, in Composite Materials: Testing and Design, ASTM STP 460, pp. 256–253, 1969.

    Google Scholar 

  12. Young, J.H., and Carlson, R.G.; “Advanced Composite Material Structural Hardware Development and Testing Program”, AFML-TR-70-140, Vol. 1, July 1970.

    Google Scholar 

  13. Dolowy Jr., J.F., and Webb, B.A.; “Fabrication and Heat Treatment Effects on Aluminum-Boron Composites”, Washington Univ., St. Louis, Mo., Mar. 1969.

    Google Scholar 

  14. Hoffmanner, A.L.; “Study of Methods to Produce Composite Beryllium Blades”, Final Report, Contract NOw-65-0281-f. Aug. 1966.

    Google Scholar 

  15. Herman, M.; Beryllium Wire-Metal Matrix Composites Program, Final Report, Contract N00019-67-C-0532, Allison Report EDR 5950, July 31, 1968.

    Google Scholar 

  16. Toy, A.; “Mechanical Properties of Be Filament Reinforced Aluminum Composites”, J. of Mater., Vol. 3, (1) p. 43, Mar. 1968.

    Google Scholar 

  17. Allison Div., General Motors, Beryllium Wire-Metal Matrix Composites Program. Progress Reports July 1967-Apr. 1969. Contract Nos. N00019-69-C-0532 and N00019-69-C-9234.

  18. Fleck, J.N., and Goldstein, M.; “Beryllium Reinforced Aluminum”, 15th National SAMPE Symposium, Los Angeles, Calif., April 1969.

    Google Scholar 

  19. Sumner, E.V.; “Development of Ultrahigh Strength Low Density Al Plate Composites”, Final Report, NAS8-11508, Harvey Report No. HA-2263, July 1966.

    Google Scholar 

  20. Jackson, P.W., and Cratchley, D.; “The Effect of Fiber Orientation on Tensile Strength of Fibre Reinforced Metals”, J. Mechanics and Physics Solids, Vol. 14 (1), p. 49, 1966.

    Article  Google Scholar 

  21. Alexander, J.A., Cunningham, A.L., and Chuang, K.C.; “Investigation to Produce Metal Matrix Composites with High Modulus, Low Density Continuous Filament Reinforcements”, AFML-TR-67-391, Feb. 1968.

    Google Scholar 

  22. Brentnall, W.D., and Toth, I.J.; “Advanced Aluminum Matrix Composites”, TRW Internal Report TM 4588, Feb. 1971.

    Google Scholar 

  23. Baker, A.A., Mason, J.E., and Cratchley, D.; “High-Strain Fatigue Studies of Composite Material”, J. Mat. Set., Vol. 1, (3), p. 229, Aug. 1966.

    Article  Google Scholar 

  24. Jackson, P.W., Baker, A.A., Cratchley, D., Walker, P.J.; “The Fabrication of Components from Al Reinforced with SiO2 Fibers”, Powder Metallurgy, Vol. 11 (21), pp. 1–22, 1968.

    Article  Google Scholar 

  25. Baker, A.A., and Jackson, P.W.; “Silica Fibre Reinforcement of Aluminum”, Glass Technology, Vol. 9, no. 2, pp. 36–41, April 1968.

    Google Scholar 

  26. Davies, L.W.; “Methods of Making Metal Matrix Composites”, SME Paper, E.M. 70-124.

  27. Meyerer, W.J.; “The Feasibility of Forming a Boron Fiber Reinforced Aluminum Composite by a Hot Extrusion Process”, AFML-TR-68-127, Aug. 1968.

    Google Scholar 

  28. Fleck, J.N., Smith, E.G., and Laber, D.; “Explosive Welding of Metal Matrix Composites”, J. of Composite Materials, Vol. 3, p. 699, Oct. 1969.

    Google Scholar 

  29. Lenoe, E.M.; “Micromechanics of High Strength, Low Density Boron Filament Reinforced Al Metallic Composites”, Part I, AFML-TR-67-125, May 1967.

    Google Scholar 

  30. Lenoe, E.M., Murro, R.P., Beaumont, S., and War, J.; “Micromechanics of High Strength, Low Density Boron Filament Reinforced Metallic Composites”, AFML-TR-67-125, Part II.

  31. Rossi, R.C., Pepper, R.T., and Riley, W.C.; “Development of Aluminum-Graphite Composites”. Presented at the 72nd Annual Meeting of the American Ceramic Society, Philadelphia, Pa., May 6, 1970.

    Google Scholar 

  32. Howlett, B.W., Mintz, D.C., and Old, CR.; “The Fabrication and Properties of Carbon-Fibre Metal Composites”, International Conference on Carbon Fibres Their Composites and Applications, London, Feb. 2–4, 1971.

    Google Scholar 

  33. Davies, L.G., Powers, W.M., and Shaver, R.G.; “Low Cost Metal Matrix Composite Fabrication”, SAMPE, National Symposium and Exhibit, Apr. 21–23, 1971.

    Google Scholar 

  34. Vidoz, A.E., Camahort, J.L., and Crossman, F.W.; Journal of Composite Material, Vol. 3, 2, p. 254, 1969.

    Article  Google Scholar 

  35. Kreider, K.G., Schile, R.D., Breinan, E.M., and Marciano, M.; “Plasma Sprayed Metal Matrix Fiber Reinforced Composites”, AFML-TR-68-119, July 1968.

    Google Scholar 

  36. Withers, J.C., and Abrams, E.F.; “The Electroforming of Composites”, Plating, pp. 605–611, June 1968.

    Google Scholar 

  37. Withers, J.C.; “The Fabricability of Multilayer Beryllium Wire Reinforced Aluminum Composites by Chemical Vapor Deposition”, GTC Tech. Report 155.5-1, July 1968.

    Google Scholar 

  38. Sheehan, J.E., and Hirschorn, J.S.; “Fiber Breakage During Powder Metallurgy Fabrication of Aluminum-Boron Composites”, Trans. ASM, p. 804, Sept. 1969.

    Google Scholar 

  39. Alexander, J.A.; “Engineering Uses of Filament Reinforced Metal Matrix Composites”, Metals Engineering Quarterly, Vol. 10, (2), p. 22, 1970.

    Google Scholar 

  40. Wilkining, W.W., and Backofen, W.A.; Deformation Processing of Anisotropic Metals”, Final Report, Contract N00019-70-C-0071, Aug. 1970.

    Google Scholar 

  41. Camahort, J.L.; Private Communication, Oct. 1971.

  42. Hanby, K.R.; “Fiber Reinforced Metal-Matrix Composites”, 1969–1970, DMIC Report S-33, July 1, 1971.

    Google Scholar 

  43. Weisinger, M.D.; “Forming and Machining Aluminum-Boron Composites”, 1970 Western Metal and Tool Conference and Exposition, 9–12 Mar. 1970, Los Angeles, Calif., ASM Paper W70-5.2.

    Google Scholar 

  44. Happe, R.A. and Yeast, A.J.; “Evaluation of Boron-Aluminum Composite Material for Space Structures”, Materials and Processes for the 70s, Vol. 15, SAMPE, Apr. 29–May 1, 1969.

  45. Schaefer, W.H., Christian, J.L., et al.; “Evaluation of the Structural Behavior of Filament Reinforced Metal Matrix Composites”, AFML-TR-69-36, Vol. I—III, Jan. 1969.

    Google Scholar 

  46. Breinan, E.M. and Kreider, K.G.; “Braze Bonding and Joining of Aluminum Boron Composites”, Metals Eng. Qtly. (ASM), pp. 5–15, Nov. 1969.

    Google Scholar 

  47. Hersh, M.S. and Duffy, E.R.; “Development of Fabrication Methods for Aluminum-Boron Composite Aircraft Structures”, in DMIC Memorandum 243, May 1969.

    Google Scholar 

  48. Olster, E.F. and Jones, R.C.; “Diffusion Bonded Scarf Joints in a Metal Matrix Composite”, in Composite Materials: Testing and Design, ASTM STP 460, pp. 393–404, 1969.

    Chapter  Google Scholar 

  49. Getten, J.R. and Ebert, L.J.; The Cold Rolling Characteristics of Aluminum-Boron Fiber Composites”, ASM Trans., Vol. 62, p. 869, 1969.

    Google Scholar 

  50. Forest, J.D. and Christian, J.L.; “Development and Application of High Matrix Strength Aluminum-Boron”, Metals Eng. Quarterly, Feb. 1970.

    Google Scholar 

  51. Rosen, B.W.; “Thermochemical Properties of Fibrous Composites”, Proc. Roy Soc, Lond. Series A, 319, pp. 79–94, 1970.

    Article  Google Scholar 

  52. Kreider, K. G., et al; “Thermal Expansion of Boron Fiber-Aluminum Composites”, Met. Trans., 1, p. 3431, Dec. 1970.

    Google Scholar 

  53. Turner, P.S.; Nat. Bur. Std. Res. Paper RP 1745, Vol. 37, Oct. 1946.

  54. Kerner, E.H.; Proc. Phys. Soc., Vol. 69, 808, 1956.

    Article  Google Scholar 

  55. Thomas, J.P.; Convair (Fort Worth) Report No. FGT-2713.

  56. Levin, V.M.; Mekhanika Tverdogo Tela, Vol. 88, 1967.

  57. Shapery, R.A.; J. Composite Mat., Vol. 1, 2, 1968.

    Google Scholar 

  58. Hashin, Z.; “Mechanics of Composite Materials”, Pergammon Press, N. Y.

  59. Pottinger, M.G.; “Material Damping of Glass Fiber-Epoxy and Boron Fiber-Aluminum Composites”, ARL 70-0237, Oct. 1970.

    Google Scholar 

  60. Moore, C.I.; “The Strength of Composite Materials Reinforced with Brittle Fiber”, DMIC Memorandum 243, May 1969.

    Google Scholar 

  61. Jones, B.H.; “Strength and Fracture Characteristics of Filamentary Composites”, ASME Paper 70-DE-31.

  62. Pepper, R.T., Upp, J.W., Rossi, R.C. and Kendall, E.G.; “The Tensile Properties of a Graphite-Fiber-Reinforced Al-Si Alloy”, Met. Trans., Vol. 2, pp. 117–120, Jan. 1971.

    Article  Google Scholar 

  63. Menke, G.D. and Toth, I.J.; “The Time Dependent Mechanical Behavior of Composite Materials”, AFML-TR-70-174, June 1970.

    Google Scholar 

  64. Toth, I.J.; “Tensile and Fatigue Behavior of B-AI Composites”, presented at the 1970 Spring Meeting of the Metallurgical Society of AIME at Las Vegas, Nevada, May 1970.

    Google Scholar 

  65. Menke, G.D., and Toth, I.J.; “Time Dependent Mechanical Behavior of Metal Matrix Composites”, TRW Inc., Technical Management Report ER 7274-6, on Contract F33615-71-C-1501, Oct. 1971.

    Google Scholar 

  66. Kreider, K.G., Dardi, L., and Prewo, K.; “Metal Matrix Composite Technology”, AMFL-TR-70-193.

  67. Toth, I.J., and Shimmin, K.D.; “Fatigue and Fracture of Metal-Matrix Composites,” Air Force Flight Dynamics Laboratory, Miami Beach Conference, Dec. 15–18, 1969, AFFDL TR 70-144, pp. 343–376.

    Google Scholar 

  68. Toth, I.J.; “An Exploratory Investigation of the Time Dependent Mechanical Behavior of Composite Materials,” AFML-TR-69-9, April 1969.

    Google Scholar 

  69. Ryder, CG., Vidoz, A.E., Crossman, F.W., and Camahort, J.L.; “Mechanical Properties of Nitrided Boron-Aluminum Composites,” J. Comp. Materials, Vol. 4, pp. 264–272, April 1970.

    Article  Google Scholar 

  70. Davis, L.W.; “Comparison of Boron-Epoxy and Boron-Aluminum Composites,” Materials and Processes for the 70s, Science of Advanced Materials and Process Engineering Proceedings, Vol. 15, SAMPE, 1969.

    Google Scholar 

  71. Kelly, A., and Davies, G.J.; “The Principles of the Fiber Reinforcement of Metals”, Met. Reviews, Vol. 10, No. 37, 1965.

    Article  Google Scholar 

  72. Chen, P.E., and Lin, J.M.; “Transverse Properties of Fibrous Composites”, Mat. Res. & Standards, Vol. 9, No. 8, pp. 29–33, Aug. 1969.

    Google Scholar 

  73. Kelly, A., and Bomford, M.J.; “Fatigue of the Matrix in Fibre-Reinforced Composite”, Chapter 24 in Physics of Strength and Plasticity, Argon, A.S., Ed., M.I.T. Press, 1969.

    Google Scholar 

  74. Menke, G.D., and Toth, I.J.; “The Time Dependent Mechanical Behavior of Metal Matrix Composites”, AFML-TR-71-102, 1971.

    Google Scholar 

  75. Shimizu, H., and Dolowy, J.F., Jr.; “Fatigue Testing and Thermal-Mechanical Treatmant Effects on Aluminum-Boron Composites”, in Composite Materials: Testing and Design, ASTM STP 460, pp. 192–202, 1969.

    Chapter  Google Scholar 

  76. Hancock, J.R.; “Mechanisms of Fatigue in Filament-Reinforced Metals”, Air Force Flight Dynamics Laboratory, Miami Beach Conference, Dec. 15–18, 1969, AFFDL TR 70-144, pp. 285–300, 1969.

    Google Scholar 

  77. Upp, J.W., Pepper, R.T., and Kendall, E.G.; “High-Temperature Properties of Aluminum-Graphite Composites,” Air Force Systems Command report SAMSO-TR-70-408, Oct. 1970.

    Google Scholar 

  78. Kreider, K.G., and Breinan, E.M.; “Materials Technology for Borsic-Aluminum Aircraft Parts”, Metal Progress, May 1970.

    Google Scholar 

  79. Menke, G.D., Brentnall, W.D., and Toth, I.J.; “Creep Formability of Metallic Composites”, presented at the 1971 Metal Show, Detroit, Oct. 21, 1971.

    Google Scholar 

  80. Schulz, W.J., Mangiapane, J.A., and Star-gardter, H.; “Development of Borsic-Aluminum Composite Fan Blades for Supersonic Turbofan Engines”, ASME Paper 71-GT-90.

  81. Greszczuk, L.N.; “Shear-Modulus Determination of Isotropic and Composite Materials”, in Composite Materials: Testing and Design, ASTM STP 460, pp. 140–149, 1969.

    Chapter  Google Scholar 

  82. Kreider, K.G.; “Mechanical Testing of Metal Matrix Composites”, in Composite Materials: Testing and Design, ASTM STP 460, pp. 203–214, 1969.

    Chapter  Google Scholar 

  83. Sattar, S.A., and Kellogg, D.H.; “The Effect of Geometry on the Mode of Failure of Composites in Short-Beam Shear Test”, in Composite Materials: Testing and Design, ASTM STP 460, pp. 62–71, 1969.

    Chapter  Google Scholar 

  84. Adsit, N.R., and Witzell, W.E.; “Fracture Toughness of Aluminum-Boron Composites”, in Aircraft Structures and Materials Application, National SAMPE Technical Conference, Volume 1, pp. 391–398, Sept. 9–11, 1969.

    Google Scholar 

  85. Jackson, P.W., Baker, A.A., and Braddick, D M.; “Some Aspects of the Fracture of Boron-Aluminum Composites”, J. Materials Science, pp. 427–438, 6 (1971).

    Google Scholar 

  86. Compton, W.A., Steward, K.P., and Mnew, H.; “Composite Materials for Turbine Compressors”, AFML-TR-68-31, June 1968.

    Google Scholar 

  87. Menke, G.D., and Toth, I.J.; “Erosion and FOD of Metal Matrix Composites”, TRW Internal Report TM 4587, Feb. 1971.

    Google Scholar 

  88. Goodwin, V.L., and Herman, M.; “Beryllium Wire-Metal Matrix Composites Program”, Detroit Diesel Allison Div. Report EDR 6986, Contract No. N00019-70-C-0239, Final Report, Jan. 1, 19702Jan. 31, 1971.

    Google Scholar 

  89. Evans, J.M. and Braddick, D.M.; “Corrosion Behavior of Fiber-Reinforced AI Composites,” Corrosion Science, Vol. 11, p. 611, 1971.

    Article  Google Scholar 

  90. Shahainian, P.; “Thermal Fatigue of Aluminum-Boron Composites,” SAMPE Qtly., Vol. 2, 1, Oct. 1970.

    Google Scholar 

  91. Klein, M.J. and Metcalfe, A.G.; Progress Report No. 4 on Contract F 33(615)-70-C-1814, April 1971.

    Google Scholar 

  92. Herman, M.; “Research and Development of an Advanced Composites Technology Base and Component Fabrication Program for Gas Turbine Compressor and Fan Blades,” AFML-TR-68-258, 1968.

    Google Scholar 

  93. Mangiapane, J.A., Sattar, S.A., Gray, D.F., and Timoshenko, J.A.; “Development of Metal-Matrix Composite Blading for Gas Turbine Engines,” AIAA 5th Annual Meeting, AIAA Paper No. 68-1037, Oct 1968.

    Google Scholar 

  94. Young, J.H. and Carlson, R.G.; “Advanced Composite Materials Structural Hardware Development and Testing Program,” AFML-TR-70-140, 1970.

    Google Scholar 

  95. Mangiapane, J.A.; “Composite Materials: Metal Matrix and Polymer-Matrix,” SAMPE Qtly., Vol. 2, Oct. 1970.

  96. Peterson, G.P.; “Advanced Composites?—A State-of-the-Art Assessment,” ASME Paper 70-GT-120, May 1970.

    Book  Google Scholar 

  97. Rogers, C.W. et al.; “Advanced Composite Technology Fuselage Program,” Program Reports on Contract F33615-69-C-1494, 1969.

    Google Scholar 

  98. Christian, J.L.; “Material and Fabrication Development and Application Studies of Aluminum-Boron-Stainless Steel Composites,” ASME Paper 70-GT-46, May 1970.

    Book  Google Scholar 

  99. Taylor, R.J., Doloway, J.F., Jr. et al; “Application of Composite Materials to Ramjet Inlet Structures,” AFML-TR-68-85, May 1968.

    Google Scholar 

  100. Sattar, S.A., Stargardter, H., and Randall, D.G.; “The Development of JT 8D Turbofan Engine Composite Fan Blades,” AIAA Paper No. 69-465, June 1969.

    Google Scholar 

  101. Assi, V.D., and Tsai, S.W.; “Anisotropic Strength of Composites”, Experimental Mechanics, pp. 283–288, Sept. 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Part IV: Environment, application, cost, and future. The concluding article of this series reviews data on environmental conditions, aerospace applications, composite costs, and future directions of research in the field.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toth, I.J., Brentnall, W.D. & Menke, G.D. Environment, application, cost and future. JOM 24, 37–42 (1972). https://doi.org/10.1007/BF03355816

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03355816

Keywords

Navigation