International Journal of Metalcasting

, Volume 4, Issue 2, pp 25–43 | Cite as

On Line Oxygen Activity Measurements to Determine Optimal Graphite form During Compacted Graphite Iron Production

  • F. Mampaey
  • D. Habets
  • J. Plessers
  • F. Seutens


Lately, the present authors published a study where oxygen activities were measured using a commercial sensor, which became recently available. In ductile cast iron melts with ferritic and pearlitic structure, optimal properties occur for a well-defined oxygen activity. Castings poured in these circumstances present maximal nodularity, elongation and ferrite content combined with lowest hardness. Additionally, the first results for compacted graphite cast iron were published. The present contribution examines in much more detail the effect of sulfur and oxygen activity on several phenomena important during production of compacted graphite cast iron. These phenomena are the limit for which mechanical properties as defined in ISO16112 are met, the transition from compacted graphite to lamellar graphite and the point at which 20 percent nodularity occurs.

Taking into account that the oxygen activity measurement is obtained in about 12 seconds, the sensor seems to be very promising for compacted iron process control.


oxygen activity compacted graphite iron image analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weiss G., Kaiser R.W., “Hochleistungsmotoren nur mit Gusseisen!,“ Giesserei-Rundschau, vol. 49, pp 70–71 (2002).Google Scholar
  2. 2.
    Röhrig K., “Gießtechnik im Motorenbau — Anforderungen der Automobilindustrie”, Giesserei-Praxis, no. 5, pp 191–197, no. 6, pp 255–262 (2003).Google Scholar
  3. 3.
    Evans E.R., Lalich M.J., “Compacted Graphite Cast Irons and Their Production by a Single Alloy Addition,” AFS Transactions, vol. 84, pp 215–220 (1976).Google Scholar
  4. 4.
    Dawson S., Schroeder T., “Practical Applications for Compacted Graphite Iron,” AFS Transactions, vol. 112, Paper 04-047, pp 1–9 (2004).Google Scholar
  5. 5.
    Steller I., “Das neue VDG-Merkblatt W 50 Gußeisen mit Vermiculargraphit,” konstruieren + giessen, vol. 28, no. 2, pp 22–24 (2003).Google Scholar
  6. 6.
    Sillen R. V., “Process Control Methods for Production of Castings in Compacted Graphite Iron”, 66th World Foundry Congress Istanbul, pp 1017–1030 (2004).Google Scholar
  7. 7.
    Mampaey F., “Acoustic Resonance Analysis for Examining the Graphite Shape in Cast Iron,” AFS Transactions, vol. 115, paper no. 07-129 (2007).Google Scholar
  8. 8.
    Mampaey F., Habets D., Seutens F. and Plessers J., “The Use of Oxygen Activity Measurement to Determine Optimal Properties of Ductile Iron During Production,” International Foundry Research / Giessereiforschung, vol. 60, no. 1, pp 2–19 (2008).Google Scholar
  9. 9.
    Mampaey F., Habets D., Plessers J., Seutens F., “The Use of Oxygen Activity Measurements to Determine Compacted Graphite Structure,” 2008 Keith Millis Symposium on Ductile Cast Iron, American Foundry Society, pp 116–127 (2008).Google Scholar
  10. 10.
    Speer M.C., Parlee N.A.D., “Desulfurization Reactions of Magnesium Vapor in Liquid Iron Alloys,” Cast Metals Res. Journal, vol. 8, no. 3, pp 122–128 (1972).Google Scholar
  11. 11.
    Fray D.J., “The Use of Solid Electrolytes in the Determination of Activities and the Development of Sensors,” Metallurgical and Materials Transactions B, vol. 34B, pp 589–594 (2003).CrossRefGoogle Scholar
  12. 12.
    HEN, Heraeus Electro-Nite Celox-Foundry, CF 10700692.Google Scholar
  13. 13.
    Mampaey F., “Image Analysis of Graphite Particles by a Mathematical Description of the Particle Contour,” AFS Transactions, vol 113, paper no 05-155 (2005).Google Scholar
  14. 14.
    Riposan I., Datcu M., Chisamera M., Manolescu E., “Control of the Degree of Graphite Compactness in Vermicular and Coral Graphite Cast Irons with the Help of a Romanian System of Automatic Digital Image Analysis, “FOCOMP’86, pp 269–278, Foundry Res. Inst. Poland (1986).Google Scholar
  15. 15.
    Stefanescu D.M., Hummer R., Nechtelberger E., “Compacted Graphite Irons,” in Metals Handbook, 9th Ed., Volume 15 Casting, p 667, ASM Int. (1988).Google Scholar
  16. 16.
    ISO/DIS 945-1 “Designation of Microstructure of Cast Irons — Part 1: Graphite Classification by Visual Analysis”.Google Scholar
  17. 17.
    Ellis J. F., Donoho C.K., “Magnesium Content and Graphite Forms in Cast Iron,” AFS Transactions, vol. 66, pp 203–209 (1958).Google Scholar
  18. 18.
    Sofue M., Okada S., Sasaki T., “High-Quality Ductile Cast Iron With Improved Fatigue Strength,” AFS Transactions, vol. 86, pp 173–182 (1978).Google Scholar
  19. 19.
    Itofuji H., “The Influence of Free Magnesium on Some Properties in Spheroidal Graphite Irons,” Int. J. Cast Metals Res., vol. 12, pp 179–187 (1999).Google Scholar
  20. 20.
    Sokoljuk J., Razdobarin I.G., Kornienko L.G., Basenko L.K., Litejnoe Proizvodstvo (1990) no. 3 pp 7–8 as cited in Gießereitechnik, vol. 36, no. 9, p 288 (1990).Google Scholar
  21. 21.
    Hasse S., “Die Wirkung von Spurenelementen in Gußeisen mit Kugelgraphit,” Giesserei-Praxis, no. 15/16, pp 271–278 (1995).Google Scholar
  22. 22.
    Döpp R., Koerfer G., Kuhn G., “Herstellung und Eigenschaften von dickwandigen Gußteilen aus Gußeisen mit Kugelgraphit im Flüssigverbund zwischen Hochofen und Induktionsofen,” Giesserei, vol. 79, no. 4, pp 144–147 (1992).Google Scholar
  23. 23.
    Kusakawa T., Xu X., Okimoto S., “Effects of Oxygen in Cast Iron during Melting and Solidification Process,” Report of the Castings Research Laboratory, Waseda University, no. 38, pp 33–39 (1988).Google Scholar
  24. 24.
    Hummer R., “Die Sauerstoffaktivität, ein Qualitätsmerkmal von Gusseisen — ein Überblick mit Hinweisen auf ein neues Anwendungsgebiet,” Giesserei-Rundschau, vol. 50, no. 9/10, pp 220–226 (2003).Google Scholar
  25. 25.
    ISO 16112 “Compacted (Vermicular) Graphite Irons — Classification,” Annex B, 2006.Google Scholar
  26. 26.
    Riposan I., Chisamera M., Stan S., Constantin V., Adam N., Barstow M., “Beneficial Remnant Effect of High Purity Iron in Industrial Production of Ductile Iron,” AFS Transactions, vol. 114, pp 657–666 (2006).Google Scholar
  27. 27.
    Trudel A., Gagné M., Lavallée F., “Counteracting the Effect of Steel Scrap Residuals in Ductile Iron Castings,“ AFS Transactions, vol. 104, pp 123–132 (1996).Google Scholar
  28. 28.
    Elbel T., Senberger J., Zadera A., Kocian L., “Study of the Occurrence and Suppression of Metal Reoxidation in Ferrous Castings,” World Foundry Congress 2006 Paper 94.Google Scholar
  29. 29.
    Mampaey F., Beghyn K., “Oxygen Activity in Cast Iron Measured in Induction Furnace at Variable Temperature,” AFS Transactions, vol. 114, pp 637–656 (2006).Google Scholar
  30. 30.
    Labreque C., Gagné M., Planque E., “Effect of Charge Materials on Slag Formation in Ductile Iron Melts”, Keith Millis World Symposium on Ductile Iron, American Foundry Soc., pp 41–48 (2003).Google Scholar
  31. 31.
    Weis W., “Jahresübersicht Gußeisen mit Lamellengraphit (21.Folge)”, Giesserei, vol. 71, no. 6, pp 252–257 (1984).Google Scholar

Copyright information

© American Foundry Society 2010

Authors and Affiliations

  • F. Mampaey
    • 1
  • D. Habets
    • 2
  • J. Plessers
    • 2
  • F. Seutens
    • 2
  1. 1.SirrisGentBelgium
  2. 2.Heraeus Electro-Nite Intl.HouthalenBelgium

Personalised recommendations