Skip to main content
Log in

The Effect of the Melt Temperature and the Cooling Rate on the Microstructure of the Al-20% Si Alloy Used for Monolithic Engine Blocks

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

The Al-20%Si melt heated to 785°C (1445°F) and 850°C (1562°F) exhibited refinement of the primary Si while heating to 735°C (1355°F) produced coarse and heterogeneous primary Si crystals following the solidification process at approximately 1.3, 4.5, 15 and 35°C/s. The primary Si crystals were 40% finer for the samples heated to 850°C (1562°F) as compared with those heated to 735°C (1355°F). Higher cooling rates produced better primary Si refinement and minimized its variation caused by the melt temperature. The secondary dendrite arm spacing (SDAS) was not affected by the melt temperature and was a function of the cooling rate for the given experimental conditions. The SDAS changed from approximately 32 to 22μm for a 1.3 and 4.5°C/s cooling rate and was reduced to approximately 11μm for a 35°C/s cooling rate. Cooling curve analysis was used to analyze the sequence of the metallurgical transformations and fraction liquid development during alloy melting and solidification. The non-equilibrium thermal characteristics under cooling rate up to 15°C/s were analyzed as well. The experimental results were used to optimize the casting process and improve the service characteristics of the vacuum assisted high pressure die casting (HPDC) motorcycle engine blocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ghosh S., Mott W.J., “Some Aspects of Refinement of Hypereutectic Al-Si Alloys”, AFS Transactions, vol. 72, pp 721–732 (1964).

    Google Scholar 

  2. Henslar P., “The New Porsche 944 4-Cylinder Aluminum Engine”, SAE Paper No. 830004 (1983).

  3. Jorstad J.L., “Reynolds 390 Engine Technology” SAE Paper No. 830010 (1983).

  4. Legge R. A., Smith D. M., Henkel G., “Improved Aluminium Alloy for Engine Applications”, SAE Paper No. 860558 (1986).

  5. Reuss L.E., Hughes C. N., SAE Paper No. 710150 (1971).

  6. Yamagata H., Kasprzak W., Aniolek M., Kurita H., Sokolowski J.H., “The Effect of Average Cooling Rates on the Microstructure of the Al-20% Si High Pressure Die Casting Alloy used for Monolithic Cylinder Blocks”, Journal of Materials Processing Technology, vol. 203, pp 333–341 (2008).

    Article  Google Scholar 

  7. Yamagata H., Kurita H., Aniolek M., Kasprzak W., Sokolowski J.H., “Thermal and Metallographic Characteristics of the Al-20% Si High-Pressure Die-Casting Alloy for Monolithic Cylinder Blocks”, Journal of Materials Processing Technology, vol. 199, no. 1–3, pp 84–90 (2008).

    Article  Google Scholar 

  8. Tenekedjiev N., Gruzleski J.E., “Hypereutectic Aluminum-Silicon Casting Alloys — A Review”, Cast Metals, vol. 3, no. 2, pp 96–105 (1990).

    Google Scholar 

  9. Yamagata H., “The Science and Technology of Materials in Automotive Engines”, Woodhead Publishing, Cambridge, (2005).

    Book  Google Scholar 

  10. Kamble S., Ravindran C., “Analysis of Primary Silicon Crystals in Hypereutectic Aluminum-Silicon Alloys: Effect of Change in Process Parameters”, AFS Transactions, vol. 113, pp 87–97 (2005).

    Google Scholar 

  11. Kim M., “Electron Back Scattering Diffraction (EBSD) Analysis of Hypereutectic Al-Si Alloys Modified by Sr and Sc”, Metals and Materials International, vol. 13, no. 2, pp 103–107 (2007).

    Article  Google Scholar 

  12. Li J., Elmadagli M., Gertsman V.Y., Lo J., Alpas A.T., “FIB and TEM Characterization of Subsurfaces of an Al-Si Alloy (A390) Subjected to Sliding Wear”, Materials Science and Engineering A, vol. 421, no. 1–2, pp 317–327 (2006).

    Article  Google Scholar 

  13. Xu C.L., Yang Y.F., Wang H.Y., Jiang Q.C., “Effects of Modification and Heat Treatment on the Abrasive Wear Behavior of Hypereutectic Al-Si Alloys”, Journal of Materials Science, vol. 42, no. 15, pp 6331–6338 (2007).

    Article  Google Scholar 

  14. Djurdjevic M. B., Kasprzak W., Kierkus C.A., Kierkus W.T., Sokolowski J.H., “Quantification of Cu Enriched Phases in Synthetic 3XX Aluminum Alloys using the Thermal Analysis Technique”, AFS Transactions, vol. 16, pp 1–12 (2001).

    Google Scholar 

  15. Yamagata, H., Kurita, H., “Effect of Elastic Deformation of the Honing Stone on the Exposure of Si-Crystals in a Hyper-Eutectic-Si Aluminum Cylinder Block”, Society of Automotive Engineers of Japan. SAE Paper No. 20056577 (2005).

  16. Donaule R.J., Hesterberg W.G., Cleary T.M., “Hypereutectic Aluminum-Silicon Alloy Having Refined Primary Silicon and a Modified Eutectic”, U.S. Patent No. 5234514 (Aug. 1992).

  17. Eady J.A., Smith D.M., “Properties and Applications of New Aluminum Foundry Alloy”, SAE Paper No. 840123 (1984).

  18. Shamsuzzoha M., Juretzko F.R., “Dual Refinement of Primary and Eutectic Silicon in Hyper-Eutectic Al-Si Alloys”, Aluminum Alloys for Transportation, Packaging, Aerospace and Other Applications, pp 153–162 (2007).

  19. Wang R-Y., Lu W-H., Ma Z-Y., “Electrolytic Hypereutectic Alloy Casting with Completely Eutectic Structure”, AFS Transactions, vol. 115, pp 241–248 (2007).

    Google Scholar 

  20. Xiufang B., Weimin W., “Thermal-Rate Treatment and Structure Transformation of Al-13 wt% Si Alloy Melt”, Materials Letters, (44) 1 54–58 (2000).

  21. Sigworth G. K., “Refinement of Hypereutectic Al-Si Alloys”, AFS Transactions, vol. 95, pp 303–314 (1987).

    Google Scholar 

  22. Wang H., Ning Z.Z., Davidson C.J., St John D.H., Xie S.S., “Thixotropic Structure Formation in A390 Hypereutectic Al-Si Alloy”, Proceedings of the 8th International Conference of Semi-Solid Processing, Limassol, Cyprus, Worcester Polytechnic Institute (2004).

    Google Scholar 

  23. Kasprzak M., Kasprzak W., Sokolowski J. H., U. S. Patent No. 7,255,828 (Aug. 14, 2007).

  24. Dehong L., Yehua J., Guisheng G., Rongfeng Z., Zhenhua L., Rong Z., “Refinement of Primary Si in Hypereutectic Al-Si Alloy by Electromagnetic Stirring”, Journal of Materials Processing Technology, vol. 189(1–3) pp 13–18 (2007).

    Google Scholar 

  25. Takagi H., Uetani Y., Dohi M., Yamashita T., Matsuda K., Ikeno S., “Effects of Mechanical Stirring and Vibration on the Microstructure of Hypereutectic Al-Si-Cu-Mg Alloy Billets”, Materials Transactions, vol. 48, no. 5, pp 960–966 (2007).

    Article  Google Scholar 

  26. Youn J. IL., Kang B. II, Kim Y. J., “Ultrasonic Injection for Melts Modification of Hyper-eutectic Aluminum Alloy”, Asian Forum of Light Metals & Exhibition. Kaohsiung, Taiwan (2007).

  27. Kurita H., Yamagata H., “Hypereutectic Al-20%Si Alloy Engine Block using High-Pressure Die-Casting”, Proceedings of the SAE 2004 World Congress & Exhibition, Detroit, USA, 2004-01-1028 (2004).

  28. Chen X., Kasprzak W., Sokolowski J. H., “Reduction of the Heat Treatment Process for Al-based Alloys by Utilization of Heat from the Solidification Process”, Journal of Materials Processing Technology, vol. 176, no. 1–3, pp 24–31 (2006).

    Article  Google Scholar 

  29. Kasprzak M., Kasprzak W., Kierkus C.A, Kierkus W.T., Sokolowski J.H., Evans W. J., “Structure and Matrix Microhardness of the 319 Aluminum Alloy After Isothermal Holding During the Solidification Process”, AFS Transactions, vol. 16, pp 1–11 (2001).

    Google Scholar 

  30. Sokolowski J.H., Kierkus W.T., Kasprzak M., Kasprzak W., U.S. Patent No. 7,354,491 (April 8, 2008).

  31. Onda H., Sakurai K., Masuta T., Oikawa K., Anzai K., Kasprzak W., Sokolowski J. H., “The Effect of Solidification Models on the Prediction Results of the Temperature Change of the Aluminum Cylinder Head Estimated by FDM Solidification Analysis”, Trans Tech Publications, Switzerland, Materials Science Forum, 561–565 1967–1970 (2007).

    Google Scholar 

  32. Jorstad J.L., Apelian D., “Hypereutectic Al-Si Alloys: Practical Processing Techniques”, Die Casting Engineer, vol. 48, no. 3, pp 50, 52, 54–56, 58 (2004).

    Google Scholar 

  33. Backerüd L., Chai G., Tamminen J., “Solidification Characteristics of Aluminum Alloys, Vol. 2. Foundry Alloys”, American Foundry Society Inc., Stockholm, (1990).

    Google Scholar 

  34. Jorstad J.L., Apelian D., “Pressure Assisted Processes for High Integrity Aluminum Castings”, International Journal of Metalcasting, vol. 2, no. 1, pp 19–39 (2008).

    Article  Google Scholar 

  35. Jernkontoret Stockholm, “A Guide to the Solidification of Steels”, pp 162, ISBN 91-7260-156-6 (1977).

  36. Eskin G.I., Eskin D.G., “Some Control Mechanism of Spatial Solidification in Light Alloys”, Zeitschrift fur Metallkunde, vol. 95, no. 8 (2004).

    Article  Google Scholar 

  37. Telang Y.P., “Process Variables in Al-21Si Alloys Refinement”, AFS Transactions, vol. 71, pp 232–240 (1963).

    Google Scholar 

  38. Weiss J.C., Loper Jr. C.R., “Primary Si in Hypereutectic Aluminum-Silicon Castings”, AFS Transactions, vol. 95, pp 51–62 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasprzak, W., Sahoo, M., Sokolowski, J. et al. The Effect of the Melt Temperature and the Cooling Rate on the Microstructure of the Al-20% Si Alloy Used for Monolithic Engine Blocks. Inter Metalcast 3, 55–71 (2009). https://doi.org/10.1007/BF03355453

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03355453

Keywords

Navigation