Skip to main content
Log in

Elastoplastic deformation of shells of revolution under nonaxisymmetric loading (review)

  • Published:
International Applied Mechanics Aims and scope

Abstract

Problems of determination of the elastoplastic stress-strain state of shells of revolution under nonaxisymmetric force and heat loads are solved and the results are examined. The deformation characteristics of shells of revolution whose thickness varies in two directions are related using the theory of thin shells for plasticity problems. The mechanical effects are determined by the axial asymmetry of the loads, the thickness variability, and the functional dependence of stresses on deformation, temperature, and time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Andreev N. I. Obodan, A. G. Lebedev, Shell Stability Under Nonaxisymmetric Deformation [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  2. J. Arbocz G. V. Babel S. C. Batterman, et al., Thin-Walled Shell Structures: Theory, Experiment, and Design [Russian translation], Mashinostroenie, Moscow (1980).

    Google Scholar 

  3. A. Ya. Astakhova, “Design of elastoplastic shells of revolution under concentrated loads,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 4, 147–152 (1985).

    Google Scholar 

  4. M. E. Babeshko A. Z. Galishin V. A. Merzlyakov I. Yu. Pleshkanovskii, and I. V. Prokhorenko, Package of Application Programs for Study of the Thermo/Elastoplastic Stress-Strain State of Shells of Revolution Under Nonaxisymmetric Loading [in Russian], No. 50850001009, State Algorithm and Program Fund, Kiev (1985).

    Google Scholar 

  5. V. A. Bazhenov E. A. Gotsulyak, A. I. Ogloblya, “Elastoplastic deformation of thin-walled cylindrical shells,” in: Applied Problems of Strength and Plasticity, Numerical Modeling of Physical and Mechanical Processes [in Russian], Izd. Gorki State Univ., Gorki (1989), pp. 28–35.

    Google Scholar 

  6. V. A. Bazhenov A. I. Gulyar A. S. Sakharov, A. G. Topor, Semi-Analytic Finite-Element Method in Mechanics of Deformable Bodies [in Russian], NIISM, Kiev (1993).

    Google Scholar 

  7. V. A. Bazhenov A. S. Sakharov A. V. Gondlyakh, S. L. Mel’nikov, Nonlinear Problems of Mechanics of Multilayer Shells [in Russian], NIISM, Kiev (1994).

    Google Scholar 

  8. V. G. Bazhenov and D. T. Chekmarev, Variational Difference Schemes in Nonstationary Wave Problems of Dynamics of Plates and Shells [in Russian], Izd. Nizhni Novgorod Univ., Nizhni Novgorod (1992).

    MATH  Google Scholar 

  9. N. L. Belevtsova, “Study of the thermo/elastoplastic state of shells of revolution of variable rigidity in the circumferential direction.” in: Proc. 9th Conf. of Young Scientists of the Institute of Mechanics of the Academy of Sciences of the Ukrainian SSR [in Russian], Deposit No. 2644, All-Union Institute of Scientific and Technical Information (1982), pp. 6–11.

  10. N. L. Belevtsova, “Thermo/elastoplastic stressed state of shells of revolutions under a nonaxisymmetric load with allowance for the loading history,” Prikl. Mekh., 18, No. 7, 117–120 (1982).

    Google Scholar 

  11. N. L. Belevtsova, “Study of the effect of loading history on the stressed state of shells of revolution of variable rigidity in two directions,” Prikl. Mekh., 22, No. 4, 109–112 (1986).

    Google Scholar 

  12. N. L. Belevtsova, “Resolving system of equations for shells of revolution of variable rigidity in two directions under simple nonisothermal loading processes with allowance for the Bauschinger effect,” Deposit No. 506-Ukr90, Ukrainian Institute of Scientific and Technical Information (1990).

  13. N. L. Belevtsova, “Thermo/elastoplastic stressed state of shells of revolution under a nonaxisymmetric load with allowance for the Bauschinger effect,” Deposit No. 1246-Uk94, State Scientific and Technical Library of Ukraine (1994).

  14. V. I. Berlyand, T. A. Girskaya, and N. V. Tret’yak, “Approximate calculation of plastic deformations in compound shells of revolution,” in: Dynamics and Strength of Machines [in Russian], Issue 22 (1975), pp. 68–77.

  15. V. I. Berlyand, “Approximate calculation of cyclically symmetrical deformation of compound shells of revolution in the elastoplastic region,” in: Dynamics and Strength of Machines [in Russian], Issue 27 (1978), pp. 13–22.

  16. V. I. Berlyand, “On calculation of elastoplastic deformations in shells of revolution under nonaxisymmetric loading,” Prikl. Mekh., 14, No. 12, 68–75 (1978).

    Google Scholar 

  17. V. I. Berlyand T. I. Girskaya V. Ya. Ingul’tsov, N. V. Tret’yak, “Study of stress-strain state of normalized lens compensators with allowance for physical and geometrical nonlinearities,” Probl. Prochn., No. 12 30–36 (1979).

    Google Scholar 

  18. V. I. Berlyand, “Design of closed shells of revolution with allowance for physical nonlinearity under cyclically symmetric loading,” Prikl. Mekh., 18, No. 6, 57–62 (1982).

    Google Scholar 

  19. V. I. Berlyand, “Elastoplastic calculation of stressed state of lens compensators under bending and a combination of bending with axisymmetric loads,” Mashinovedenie, No. 1, 67–74 (1989).

    Google Scholar 

  20. V. I. Berlyand A. A. Glyadya A. V. Pozhidaev, et al., “Calculation and experimental study and methods for calculation of the heat-stressed state of a steam-turbine valve housing,” Probl. Prochn., No. 10, 66–73 (1986).

    Google Scholar 

  21. V. I. Berlyand, “Design of shell elements of turbine housings, vessels, and equipment in the elastic and elastoplastic regions with allowance for the effect of horizontal joint flanges or meridional ribs,” Mashinovedenie, No. 5, 14{22 (1987).

    Google Scholar 

  22. V. L. Biderman, Mechanics of Thin-Walled Structures. Statics [in Russian], Mashinostroenie, Moscow (1977).

    Google Scholar 

  23. I.A. Birger, “Some general methods for solution of problems of plasticity theory,” Prikl. Mat. Mekh., 15, No. 6, 765–770 (1951).

    MathSciNet  MATH  Google Scholar 

  24. I. A. Birger, Circular Plates and Shells of Revolution [in Russian], Oborongiz, Moscow (1961).

    Google Scholar 

  25. I. A. Birger, “The general case of deformation of shells of revolution,” Prochn. Dinam. Aviats. Dvigat., No. 2, 3–35 (1965).

    Google Scholar 

  26. I. A. Birger B. F. Shorr, G. B. Iosilevich, Strength Calculations for Machine Parts [in Russian], Mashinostroenie, Moscow (1979).

    Google Scholar 

  27. V. I. Bobyr’ and D. A. Ishchenko, “Nonaxisymmetric deformation of bodies of revolution under simple loading processes,” in: Nonclassical and Mixed Problems of Mechanics of Deformable Bodies [in Russian], Deposit No. 5531-85, All-Union Institute of Scientific and Technical Information (1985), pp. 6–8.

  28. V. I. Bobyr’, “Stressed state of engine valve under nonaxisymmetric heating,” in: Proc. 11th Conf. of Young Scientists of the Institute of Mechanics of the Academy of Sciences of the Ukrainian SSR, Part 3 [in Russian], Deposit No. 5507-V86, All-Union Institute of Scientific and Technical Information (1986), pp. 439–443.

  29. V. I. Bobyr’, “Solution of thermoplasticity problem for bodies of revolution under nonaxisymmetric loading on deformation trajectories of small curvature,” Prikl. Mekh., 22, No. 7, 44–49 (1986).

    Google Scholar 

  30. V. S. Bondar’ V. M. Butin, V. M. Sannikov, “Stress-strain state and stability of multilayer shells at elevated temperatures,” Probl. Prochn., No. 5, 45–50 (1976).

    Google Scholar 

  31. A. I. Borisyuk, “Axisymmetric elastoplastic stressed state of shells of revolution,” Prikl. Mekh., 2, No. 11, 47–54 (1966).

    Google Scholar 

  32. D. L. Bykov, “On some methods for solution of problems of plasticity theory,” in: Elasticity and Inelasticity [in Russian], Issue 4 (1975), pp. 119–139.

  33. N. V. Valishvili, Computer Design of Shells of Revolution [in Russian], Mashinostroenie, Moscow (1976).

    Google Scholar 

  34. V. V. Vasil’ev, “Axisymmetric elastoplastic state of shells of revolution,” Prikl. Mekh. [in Ukrainian], 7, No. 3, 272–278 (1961).

    Google Scholar 

  35. V. V. Vasil’ev, “Study of the elastic limit of a spherical shell with a pipe,” Prikl. Mekh. [in Ukrainian], 8, No. 2, 144–147 (1962).

    Google Scholar 

  36. E. A. Velikoivanenko and V. I. Makhenko, “Thermoplasticity problem for circular cylindrical shell under arbitrary axisymmetric heating,” in: Proc. 6th All-Union Conf. on Theory of Shells and Plates [in Russian], Nauka, Moscow (1966), pp. 232–236.

    Google Scholar 

  37. I. I. Vorovich and Yu. P. Krasovskii, “On the method of elastic solutions,” Dokl. Akad. Nauk SSSR, 126, No. 4, 740–743 (1959).

    Google Scholar 

  38. A. S. Vol’mir B. A. Kuranov, A. T. Turbaivskii, Statics and Dynamics of Complex Structures: Applied Multilevel Research Methods [in Russian], Mashinostroenie, Moscow (1989).

    Google Scholar 

  39. G. D. Gavrilenko and N. E. Aranchii, “A procedure for stability calculation of incomplete elastic and inelastic ribbed shells of revolution,” in: Resistance of Materials and Theory of Structures [in Russian], Issue 56 (1990), pp. 19–24.

  40. A. Z. Galishin D. A. Ishchenko V. A. Merzlyakov, V. G. Savchenko, “On the applicability of the Kirchhoff-Love hypotheses for calculation of the thermo/elastoplastic state of cylindrical shells,” Prikl. Mekh., 27, No. 2, 66–71 (1991).

    Google Scholar 

  41. A. Z. Galishin and V. A. Merzlyakov, “Calculation of the axisymmetric thermo/elastoplastic state of laminated branched shells under processes of repeated loading,” Prikl. Mekh., 28, No. 10, 47–52 (1992).

    Google Scholar 

  42. A. Z. Galishin V. A. Merzlyakov, Yu. V. Skosarenko, “On the applicability of various approaches to determination of the axisymmetric stressed state of cylindrical shells stiffened by annular ribs,” Prikl. Mekh., 26, No. 10, 50–55 (1990).

    Google Scholar 

  43. M. S. Ganeeva, “Thermal and force problem in the geometrically and physically nonlinear theory of nonthin and thin shells,” Deposit No. 4459-85Dep, All-Union Institute of Scientific and Technical Information (1985).

  44. M. S. Ganeeva, Strength and Stability of Shells of Revolution [in Russian], Nauka, Moscow (1992).

    MATH  Google Scholar 

  45. M. S. Ganeeva and V.E. Moiseeva, “Large deflections and nonaxisymmetric stability loss of nonthin elastoplastic shells of revolution,” in: Studies in Shell Theory: Seminar Proc. [in Russian], Issue 17, Part 1, Kazan (1984), pp. 66–78.

  46. S. K. Godunov, “On numerical solution of boundary-value problems for systems of ordinary linear differential equations,” Usp. Mat. Nauk, 16, No. 3, 171–174 (1961).

    MathSciNet  MATH  Google Scholar 

  47. E. B. Gorbachev, “Forces and deformations beyond the elastic limit at the junction of cylindrical and conical shells,” Inzh. Zh., 1, No. 1, 183–190 (1961).

    MATH  Google Scholar 

  48. D. A. Gokhfel’d, P. I. Ermakov, and I. M. Plagov, “Elastoplastic deformation of a cylindrical shell under the repeated action of a moving axisymmetric heat source,” in: Heat Stresses in Structural Elements [in Russian], Issue 6 (1966), pp. 89–98.

  49. É. I. Grigolyuk, “Plastic buckling of shells of revolution,” Izv. Akad. Nauk SSSR, Otd. Tekh. Nauk, No. 2, 130–132 (1958).

    MathSciNet  Google Scholar 

  50. É. I. Grigolyuk and V. V. Kabanov, Stability of Shells [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  51. Ya. M. Grigorenko, Isotropic and Anisotropic Laminated Shells of Revolution of Variable Rigidity [in Russian], Naukova Dumka, Kiev (1973).

    Google Scholar 

  52. Ya. A. Grigorenko A. T. Vasilenko E. I. Bespalova, et al., Numerical Solution of Problems of Statics of Orthotropic Shells with Variable Parameters [in Russian], Naukova Dumka, Kiev (1975).

    Google Scholar 

  53. Ya. M. Grigorenko and A. P. Mukoed, Computer Solution of Problems of Shell Theory [in Russian], Vyshcha Shkola, Kiev (1979).

    Google Scholar 

  54. Ya. M. Grigorenko and A. T. Vasilenko, Methods of Shell Design, in 5 Volumes, Vol. 4, Theory of Shells of Variable Rigidity, [in Russian], Naukova Dumka, Kiev (1981).

    Google Scholar 

  55. Ya. M. Grigorenko and A. P. Mukoed, Computer Solution of Nonlinear Problems of Shell Theory, [in Russian], Vyshcha shkola, Kiev (1983).

    Google Scholar 

  56. Ya. M. Grigorenko and N. N. Kryukov, Numerical Solution of Problems of Statics of Flexible Laminated Shells with Variable Parameters [in Russian], Naukova Dumka, Kiev (1988).

    Google Scholar 

  57. Ya. M. Grigorenko and A. T. Vasilenko, Problems of Statics of Anisotropic Inhomogeneous Shells [in Russian], Nauka, Moscow (1992).

    Google Scholar 

  58. V. S. Gudramovich V. P. Gerasimov V. S. Konovalenkov, V. P. Poshivalov, Limit States of Shells Under Compound Loading and Material Creep [in Russian], Naukova Dumka, Kiev (1984).

    Google Scholar 

  59. V. S. Gudramovich, Stability of Elastoplastic Shells [in Russian], Naukova Dumka, Kiev (1987).

    Google Scholar 

  60. V. S. Gudramovich V. P. Gerasimov, A. F. Demenkov, Limit Analysis of Structural Elements [in Russian], Naukova Dumka, Kiev (1990).

    Google Scholar 

  61. V. S. Gudramovich and A. F. Demenkov, Elastoplastic Structures with Imperfect Shapes and Residual Stresses [in Russian], Naukova Dumka, Kiev (1991).

    Google Scholar 

  62. J. N. Goodier and P. G. Hodge, Elasticity and Plasticity: The Mathematical Theory of Elasticity, Wiley, New York (1958).

    Google Scholar 

  63. A. N. Guz’ I. S. Chernyshenko Val. N. Chekhov Vik N. Chekhov}, and {gnK. I. Shnerenko, “Studies in the theory of thin shells with holes},” Prikl. Mekh.}, 15}, No. 11}, 3–38 (1

    MathSciNet  Google Scholar 

  64. A. N. Guz’ I. S. Chemyshenko Val. N. Chekhov Vik. N. Chekhov, K. I. Shnerenko}}, Methods of Shells Design, in 5 Volumes, Vol. 1, Theory of Thin Shells Weakened by Holes [in Russian], Naukova Dumka, Kiev (1980).

    Google Scholar 

  65. V. I. Gulyaev V. A. Bazhenov, P. P. Lizunov, Nonclassical Shell Theory and Its Application in Engineering Problems [in Russian], Vyshcha Shkola, Lvov (1978).

    Google Scholar 

  66. A. I. Gulyar and V. N. Karkhalev, “Calculation of nonaxisymmetric elastoplastic deformation of a compound shell of revolution of variable rigidity under localized loads,” in: Resistance of Materials and Theory of Structures [in Russian], Issue 43 (1983), pp. 65–68.

  67. A. I. Gulyar, A. S. Sakharov, and A. G. Topor, “Elastoplastic equilibrium of a torospherical vessel under nonaxisymmetric heat and force loading,” in: Topics in Dynamics and Strength [in Russian], 48, (1984), pp. 3–7.

  68. A. I. Gulyar and A. G. Topor, “KRUG program package for strength calculations of three-dimensional structures,” in: Resistance of Materials and Theory of Structures [in Russian], Issue 48 (1986), pp. 42–46.

  69. A. I. Gulyar, E. N. Il’chenko, and S. A. Shalygin, “Numerical evaluation of convergence of traditional and semi-analytic versions of the finite-element method in the design of cylindrically symmetric bodies,” in: Resistance of Materials and Theory of Structures [in Russian], Issue 54 (1989), pp. 40–42.

  70. A. P. Gusenkov G. V. Moskvitin, V. N. Khoroshilov, Low-Cycle Strength of Shell Structures [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  71. I. L. Dolzhikov, “Study of the stressed state of axisymmetric shells beyond the elastic limit under a nonaxisymmetric action, in: Mathematical Methods and Computer Techniques in Chemical Industrial Engineering [in Russian], NIIkhimmash, Moscow (1985), pp. 17–24.

    Google Scholar 

  72. L. V. Endzhievskii, Nonlinear Deformations of Ribbed Shells, [in Russian], Izd. Krasnoyarsk Univ, Krasonyarsk (1982).

    Google Scholar 

  73. L. V. Endzhievskii and T. V. Polonskaya, “Variational difference algorithm for design of elastoplastic flexible ribbed shells of revolution,” Izv. Vyssh. Uchebn. Zaved., Stroit. Arkhitekt., No. 3, 37–40 (1986).

    Google Scholar 

  74. M. F. Ershov, “Equilibrium of flexible elastoplastic shells and plates,” Prikl. Mekh. [in Russian], 8, No. 5, 489–499 (1962).

    Google Scholar 

  75. A. P. Zheleznov and A. V. Kuznetsov, “Study of nonaxisymmetric stress-strain state of cylindrical shells beyond the elastic limit,” in: Dynamics and Strength of Aircraft Structures [in Russian], Novosibirsk (1989), pp. 37–43.

  76. V. S. Zarubin, “Study of the loading history of a nonuniformly heated cylindrical shell,” in: Heat Stresses in Structural Elements [in Russian], Issue 4 (1964), pp. 223–232.

  77. A. A. Zolochevskii and S. V Damasevich, “Design procedure for conical shells of materials with different resistances to extension and compression under nonaxisymmetric loading”, in: Dynamics and Strength of Machines [in Russian], Issue 53 (1993), pp. 28–39.

  78. A. A. Il’yushin, “Deformation of a circular membrane,” in: Sci. Trans. Moscow State Univ. [in Russian], Issue 24, Book 2 (1938), pp. 137–142.

  79. A. A. Il’yushin, “Compression of pipes,” Inzh. Sbor., 1, No. 1, 37–42 (1941).

    Google Scholar 

  80. A. A. Il’yushin, “Some aspects of the theory of plastic deformations,” Prikl. Mat. Mekh., 7, No. 4, 245–272 (1943).

    MathSciNet  Google Scholar 

  81. A. A. Il’yushin, “Approximate theory of elastoplastic deformations of axisymmetric shells,” Prikl. Mat. Mekh., 8, No. 1, 15–24 (1944).

    MathSciNet  Google Scholar 

  82. A. A. Il’yushin, “Stability of plates and shells beyond the elastic limit,” Prikl. Mat. Mekh., 8, No. 5, 337–360 (1944).

    MathSciNet  Google Scholar 

  83. A. A. Il’yushin, Plasticity [in Russian], Gostekhizdat, Moscow-Leningrad (1948).

    Google Scholar 

  84. V. N. Ionov, “Calculation of stresses in a shell of revolution of nonzero curvature,” Nauchn. Dokl. Vyssh. Shkoly, Mashinostr. Priborostr., No. 2, 78–85 (1959).

    Google Scholar 

  85. V. N. Ionov, “Stress-strain state of shells of revolution of zero curvature,” Inzh. Sbor., 29, 63–76 (1960).

    MATH  Google Scholar 

  86. B. Ya. Kantor, Nonlinear Problems of the Theory of Inhomogeneous Shallow Shells [in Russian], Naukova Dumka, Kiev (1971).

    MATH  Google Scholar 

  87. B. Ya. Kantor, Contact Problems of the Nonlinear Theory of Shells of Revolution [in Russian], Naukova Dumka, Kiev (1990).

    MATH  Google Scholar 

  88. S. A. Kapustin, “Design of thin arbitrarily configured elastoplastic shells of revolution by the variation and difference method,” in: Methods for Solution of Elasticity and Plasticity Problems (2), Sci. Trans. Gorki Univ. [in Russian], Issue 108 (1970), pp. 16–27.

  89. S. A. Kapustin, “Numerical analysis of nonlinear quasi-static processes of deformation of compound structures,” in: Applied Problems of Strength and Plasticity. Statics and Dynamics of Deformable Systems [in Russian], Izd. Gorki Univ., Gorki (1979), pp. 68–80.

    Google Scholar 

  90. A. V. Karmishin V. A. Lyaskovets V. I. Myachenkov, A. N. Frolov, Statics and Dynamics of Thin-Walled Shell Structures [in Russian], Mashinostroenie, Moscow (1975).

    Google Scholar 

  91. A. P. Krol’ and A. Sh. Libster, “Computer design of disks that operate under conditions of combined extension and bending,” in: Proc. Central Turbine-Boiler Sci.-Tech. Res and Design Inst. [in Russian], Issue 74 (1966), pp. 121–136.

  92. V. A. Krys’ko, Nonlinear Statics and Dynamics of Inhomogeneous Shells [in Russian], Izd. Saratov Univ., Saratov (1976).

    Google Scholar 

  93. B. A. Kuranov and I. A. Oderov, Modern Methods for Design of Shell Structures with Geometrical and Physical Nonlinearities. Nonlinear Shell Models. A Review [in Russian], NPO Kriogenmash, Balashikha (1984).

    Google Scholar 

  94. Yu. R. Lepik, “Equilibrium of elastoplastic and rigidly plastic plates and shells,” Inzh. Zh., 4, No. 3, 601–616 (1964).

    MathSciNet  Google Scholar 

  95. V. N. Likhachev and B. A. Lyukshin, “Analysis of the nonaxisymmetric stress-strain state of elastoplastic shells of revolution under unsteady loading”. Izv. Vyssh. Uchebn. Zaved., Mashinostr., No. 7, 18–22 (1989).

    Google Scholar 

  96. S. Lukasiewicz, Local Loads in Plates and Shells, Sijthoff & Noordhoff, Alphen aan den Rijn (1979).

    MATH  Google Scholar 

  97. G. I. L’vov, “Nonaxisymmetric contact problem of elastoplastic deformation of a circular membrane,” in: Dynamics and Strength of Machines [in Russian], Issue 34 (1981), pp. 8–12.

  98. V. N. Maksimovich and L. V. Khomlyak, “Numerical and analytic solution of the thermoplasticity problem for locally heated shallow shells,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 5, 126–132 (1988).

    Google Scholar 

  99. V. N. Maksimovich and V. V. Drogobitskaya, “Study of thermo/elastoplastic state of locally heated shallow shells,” Probl. Prochn., No. 4, 18–26 (1995).

    Google Scholar 

  100. V. I. Makhnenko and E. A. Velikoivanenko, “Thermoplasticity problem for shallow shell of revolution,” in: Heat Stresses in Structural Elements [in Russian], Issue 7 (1967), pp. 57–64.

  101. V. I. Makhnenko E. A. Velikoivanenko, A. V. Musiyachenko, “Nonaxisymmetric distribution of stresses and residual deformations in welding of thin-walled cylindrical shells,” Avtomat. Svarka, No. 4, 3–7 (1993).

    Google Scholar 

  102. V. I. Makhnenko E. A. Velikoivanenko, A. V. Musiyachenko}} “Effect of nonsimultaneity of welding of annular seam on residual stresses and deformations in a cylindrical shell,” Avtomat. Svarka., No. 11, 7–10 (1994).

    Google Scholar 

  103. R. A. Mezhlumyan, “Bending and torsion of thin-walled cylindrical shells beyond the elastic limit,” Prikl. Mat. Mekh., 14, No. 3, 253–264 (1950).

    Google Scholar 

  104. V. A. Merzlyakov and I. V. Prokhorenko, Method for Thermo/Elastoplastic Calculation of Stressed State of Nonclosed Shells of Revolution [in Russian], Ukrainian Republic Algorithm and Program Fund, No. 5433, Kiev (1979).

  105. V. A. Merzlyakov, “Study of elastoplastic stressed state of a conical shell of revolution under nonaxisymmetric heating,” Prikl. Mekh., 17, No. 8, 42–47 (1981).

    Google Scholar 

  106. V. A. Merzlyakov, “Thermo/elastoplastic stressed state of a nonclosed shell of revolution under nonaxisymmetric force and heat loads,” Probl. Prochn., No. 10, 88–91 (1981).

    Google Scholar 

  107. V. A. Merzlyakov, “Calculation of nonstationary temperature fields in thin shells of revolution under nonaxisymmetric heating,” Probl. Prochn., No. 2, 81–84 (1982).

    Google Scholar 

  108. V. A. Merzlyakov, “Study of kinetics of thenno/elastoplastic stress-strain state in thin shells of revolution under nonaxisymmetric heating,” in: Proc. 9th Conf. of Young Scientists of the Institute of Mechanics of the Academy of Sciences of the Ukrainian SSR [in Russian], Deposit No. 2644-82 Dep, All-Union Institute of Scientific and Technical Information (1982), pp. 175–180.

  109. V. A. Merzlyakov, “Calculation of nonaxisymmetric thermo/elastoplastic stressed state of shells of revolution under simple loading during heating,” in: Proc. 10th Conf. of Young Scientists of the Institute of Mechanics of the Academy of Sciences of the Ukrainian SSR [in Russian], Part 1, Deposit No. 5535-84Dep, All-Union Institute of Scientific and Technical Information (1984), pp. 82–86.

  110. V. A. Merzlyakov, “Calculation of nonstationary temperature fields in thin shells of revolution that are nonclosed in the circumferential direction,” Probl. Prochn., No. 2, 75–79 (1985).

    Google Scholar 

  111. V. A. Merzlyakov, “Thermo/elastoplastic calculation of stressed state of revolution under nonaxisymmetric loading with allowance for creep deformations,” in: Proc. 12th Conf. of Young Scientists of the Institute of Mechanics of the Academy of Sciences of the Ukrainian SSR [in Russian], Part 1, Deposit No. 5389-87Dep, All-Union Institute of Scientific and Technical Information (1987), pp. 133–137.

  112. V. A. Merzlyakov, “Thermo/elastoplastic calculation of stressed state of shells of revolution under nonaxisymmetric heating with allowance for secondary plastic deformations,” in: Mathematical Methods and Physical and Mechanical Fields [in Russian], Issue 27 (1988), pp. 77–80.

  113. V. A. Merzlyakov, “Elastoplastic stress-strain state of shells of revolution under local loads,” Izv. Akad. Nauk SSSR, Mekh. Tverd Tela, No. 5, 120–125 (1990).

    Google Scholar 

  114. V. A. Merzlyakov, “Thermo/elastoplastic deformation of flexible shells of revolution under nonaxisymmetric loading,” Prikl. Mekh., 26, No. 11, 70–76 (1990).

    Google Scholar 

  115. V. A. Merzlyakov, “Elastoplastic deformation of locally heated shells of revolution,” Prikl. Mekh., 28, No. 5, 53–59 (1992).

    MATH  Google Scholar 

  116. V. A. Merzlyakov, “On elastoplastic deformation of shells of revolution of variable rigidity in two directions,” in: Studies in Plate and Shell Theory [in Russian], Issue 25, Kazan (1992), pp. 81–86.

  117. V. A. Merzlyakov and O. N. Bykhovets, “On determination of the stressed state of shells of revolution of variable thickness in two directions,” Probl. Prochn., No. 9, 44–47 (1992).

    ADS  Google Scholar 

  118. V. A. Merzlyakov, “Elastoplastic stress-strain state of shells of revolution of variable thickness in two directions,” Prikl. Mekh., 28, No. 11, 44–51 (1992).

    MATH  Google Scholar 

  119. V. A. Merzlyakov, “Calculation of thermo/visco/elastoplastic nonaxisymmetric deformation of shells of revolution of variable thickness in two directions,” Prikl. Mekh., 31, No. 2, 21–29 (1995).

    Google Scholar 

  120. V. A. Merzlyakov, “On determination of the stress-strain state of shells of revolution under localized actions,” Prikl. Mekh., 31, No. 3, 50–55 (1995).

    Google Scholar 

  121. V. A. Merzlyakov, “Determination of nonstationary temperature fields and stressed state in shells of revolution of variable thickness in two directions,” Probl. Prochn., No. 1, 63–73 (1996).

    Google Scholar 

  122. V. A. Merzlyakov, “Evaluation of effectiveness of some approaches to solution of thin-shell thermoplasticity problem,” Prikl. Mekh., 32, No. 3, 27–33 (1996).

    Google Scholar 

  123. V. A. Merzlyakov, “Thermo/elastoplastic stressed state of shells of revolution stiffened by meridional ribs,” Dokl. Nats. Akad. Nauk Ukr., No. 4, 61–67 (1997).

    Google Scholar 

  124. M. Sh. Mikeladze, Statics of Anisotropic Plastic Shells [in Russian], Izd. Akad. Nauk Gruzin SSR, Tbilisi (1963).

    Google Scholar 

  125. M. Sh. Mikeladze, Introduction to Engineering Theory of Ideally Plastic Thin Shells [in Russian], Metsniereba, Tbilisi (1969).

    Google Scholar 

  126. S. M. Mulin, “Strength and stability of nonlinearly elastic cylindrical shells of closed circular profile,” in: Strength and Stability of Elastic and Nonlinearly Elastic Systems, Proc. Omsk Inst. of Railroad Transport [in Russian], Issue 98, Omsk (1969), pp. 3–15.

  127. I. G. Muravskii, “On determination of temperature stresses in nonlinearly elastic cylindrical shells of closed circular profile,” in: Proc. Omsk Inst. of Agriculture [in Russian], Issue 99, Omsk (1972), pp. 102–107.

  128. I. G. Muravskii, “Computer determination of temperature stresses in nonlinearly elastic cylindrical shells of closed circular profile,” in: Proc. Omsk Inst. of Agriculture [in Russian], Issue 107, Omsk (1973), pp. 73–77.

  129. I. G. Muravskii, “Study of the stress-strain state of a nonlinearly elastic conical shell in the presence of a temperature field,” in: Proc. Omsk Inst. of Agriculture [in Russian], Issue 129, Omsk (1975), pp. 35–39.

  130. I. G. Muravskii, “On selection of functions for displacements in the nonlinear temperature problem of a cylindrical shell,” in: Proc. Omsk Inst. of Agriculture [in Russian], Issue 144, Omsk (1975), pp. 81–84.

  131. I. G. Muravskii, “System of resolving equations for design of a conical shell for force and temperature actions with allowance for the physical nonlinearity of the material,” in: Refrigerators and Compressors [in Russian; V. I. Gritsenko, ed.], Omsk (1980), pp. 106–113.

  132. I. G. Muravskii, “Determination of stresses and deformations in a nonlinearly elastic conical shell under an aerodynamic load and heating,” Prikl. Mekh., 20, No. 6, 64–70 (1984).

    Google Scholar 

  133. Kh. M. Mushtari and R. G. Surkin, “Mean bending of shallow spherical panel of square plan with a nonlinear relationship between deformation and stress,” Zh. Prikl. Mekh. Tekh. Fiz., No. 2, 162–165 (1960).

    Google Scholar 

  134. V. I. Myachenkov and I. V. Grigor’ev, Handbook of Computer Design of Shell Structures [in Russian], Mashinostroenie, Moscow (1981).

    Google Scholar 

  135. V. I. Myachenkov and V. P. Mal’tsev, Methods and Algorithms for Designing Three-Dimensional Structures on ES Computers [in Russian], Mashinostroenie, Moscow (1984).

    Google Scholar 

  136. V. I. Myachenkov V. P. Mal’tsev V. P. Maiboroda, et al., Handbook of Design of Industrial Engineering Structures by the Finite-Element Method [in Russian], Mashinostroenie, Moscow (1989).

    Google Scholar 

  137. V. V. Novozhilov, Theory of Thin Shells [in Russian], Sudpromgiz, Leningrad (1951).

    Google Scholar 

  138. N. I. Obodan and N. B. Makarenko, “Nonlinear deformation of a cylindrical shell under local thermal shock,” Prikl. Mekh., 26, No. 11, 55–60 (1990).

    Google Scholar 

  139. I. F. Obraztsov, B. V. Nerubailo, and V. P. Ol’shanskii, Shells Under Localized Actions (Review, Principal Results, and Research Trends) [in Russian], Moscow Aviation Inst., Moscow, Deposit No. 1222-V88, All-Union Institute of Scientific and Technical Information (1988).

  140. V. Ol’shak and A. Savchuk, Inelastic Behavior of Shells [Russian translation], Mir, Moscow (1969).

    Google Scholar 

  141. E. T. Onat and S. Jamanturk, “Temperature stresses in elastoplastic shells,” Trans. SAME, Ser. E, 29, No. 1, 122–129 (1962).

    Google Scholar 

  142. V. V. Ofii, “Physically nonlinear nonclosed shells of revolution,” in: Problems of Mechanical Engineering [in Russian], Issue 27 (1987), pp. 32–36.

  143. O. M. Palii and V. E. Spiro, Anisotropic Shells in Shipbuilding: Theory and Design [in Russian], Sudostroenie, Leningrad (1977).

    Google Scholar 

  144. I. Z. Pallei, “Effect of loading history on the stressed state of a two-layer shell,” in: Topics in Dynamics and Strength [in Russian], Issue 9 (1962), pp. 115–126.

  145. A. A. Petrakov, “Design of shells of revolution of a nonlinearly elastic heteroresistive material under nonaxisymmetric loading,” in: Topics in Theoretical and Applied Mechanics [in Russian], Moscow Civil Engineering Institute, Moscow, Deposit No., 1500-V90, All-Union Institute of Scientific and Technical Information (1990), pp. 161–170.

    Google Scholar 

  146. V. V. Pikul’, Theory and Design of Shells of Revolution [in Russian], Nauka, Moscow (1982).

    Google Scholar 

  147. V. V. Piskun, “Elastoplastic axisymmetric stressed state of a circular cylindrical shell of constant thickness under nonstationary heating,” in: Heat Stresses in Structural Elements [in Russian], Issue 6 (1966), pp. 79–88.

  148. V. G. Piskunov and V. E. Verizhenko, Linear and Nonlinear Problems of Laminated-Structure Design [in Russian], Budivel’nik, Kiev (1986).

    Google Scholar 

  149. A. N. Podgomyi V. V. Bortovoi, V. D. Kolomak, Creep and Stability of Shallow Shells of Revolution [in Russian], Naukova Dumka, Kiev (1982).

    Google Scholar 

  150. Yu. N. Rabotnov, “Approximate engineering theory of elastoplastic shells,” Prikl. Mat. Mekh., 15, No. 2, 167–174 (1951).

    MathSciNet  MATH  Google Scholar 

  151. V. I. Rozenblyum, “Approximate theory of plastic-shell equilibrium,” Prikl. Mat. Mekh., 18, No. 3, 289–302 (1954).

    MATH  Google Scholar 

  152. U. S. Saidkrimov and V. A. Tolok, “Elastoplastic design of thin cylindrical shells under cyclic loading,” Prikl. Mekh., 8, No. 7, 15–18 (1972).

    Google Scholar 

  153. A. S. Sakharov A. I. Gulyar A. G. Topor, S. M. Chornyi, “Study of three-dimensional temperature fields in massive and thin-walled bodies of revolution,” Probl. Prochn., No. 5, 70–74 (1988).

    Google Scholar 

  154. A. V. Sachenkov, “On shell stability beyond the elastic limit,” Izv. Kazan. Fil. Akad. Nauk SSSR, Ser. Fiz.-Mat. Tekh. Nauk, No. 10, 81–100 (1956).

    Google Scholar 

  155. R. E. Fulton, “Numerical design of shells of revolution,” in Computer Design of Elastic Structures [in Russian], Issue 1, Sudostroenie, Leningrad (1974), pp. 210–230.

    Google Scholar 

  156. P. G. Hodge}} “Application of piecewise-linear isotropic plasticity theory to the problem of a circular cylindrical shell under symmetric radial loading,” Mekhanika, No. 2, 77–96 (1958).

    Google Scholar 

  157. P. G. Hodge, Design of Structures with Allowance for Plastic Deformations [Russian translation], Mashgiz, Moscow (1963).

    Google Scholar 

  158. I. S. Tsurkov, “Elastoplastic equilibrium of shells of revolution under small axisymmetric deformations,” Izv. Akad. Nauk SSSR, OTN, No. 11, 106–110 (1956).

    Google Scholar 

  159. I. S. Tsurkov, “Elastoplastic deformation of orthotropic cyclindrical shells,” Izv. Akad. Nauk SSSR, OTN, No. 12, 50–53 (1957).

    Google Scholar 

  160. I. S. Tsurkov, “Elastoplastic deformations in a thin-walled cylinder near a stiffening ring,” Inzh. Sb., 28, 182–189 (1960).

    Google Scholar 

  161. V. S. Chernina, “Elastoplastic deformation of a welded heterogeneous cylindrical shell,” Izv. Akad. Nauk SSSR, Mekh. Mashinostr., No. 1, 127–133 (1960).

    Google Scholar 

  162. V.S. Chernina, Statics of Thin-Walled Shells of Revolution [in Russian], Nauka, Moscow (1968).

    Google Scholar 

  163. K. F. Chernykh, Nonlinear Elasticity Theory in Mechanical Engineering Calculations, [in Russian], Mashinostroenie, Leningrad (1986).

    Google Scholar 

  164. I. S. Chernyshenko, “Axisymmetric elastoplastic state of spherical shell weakened by a hole under finite deflection,” in: Proc. 6th All-Union Conf. on Shell and Plate Theory [in Russian], Nauka, Moscow (1966), pp. 811–815.

    Google Scholar 

  165. I. S. Chernyshenko, “On elastoplastic equilibrium of shells of revolution under finite deflections,” Prikl. Mekh., 11, No. 9, 26–36 (1966).

    Google Scholar 

  166. L. A. Shapovalov, “On a simple version of equations of the geometrically nonlinear theory of thin shells,” Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 1, 56–62 (1968).

    Google Scholar 

  167. Yu. N. Shevchenko, “Elastoplastic stressed state of nonclosed shells of revolution under nonisothermal loading processes,” in: Heat Stresses in Structural Elements [in Russian], Issue 16 (1976), pp. 67–75.

  168. Yu. N. Shevchenko and I. V. Prokhorenko, Methods of Shell Design, Vol. 3, Theory of Elastoplastic Shells Under Nonisothermal Loading Processes [in Russian], Naukova Dumka, Kiev (1981).

    Google Scholar 

  169. Yu. N. Shevchenko and R. G. Terekhov, Physical Equations of Thermo/Viscoplasticity [in Russian], Naukova Dumka, Kiev (1982).

    Google Scholar 

  170. Yu. N. Shevchenko and V. G. Savchenko, Mechanics of Coupled Fields in Structural Elements, Vol. 2, Thermo/Viscoplasticity [in Russian], Naukova Dumka, Kiev (1987).

    Google Scholar 

  171. Yu. N. Shevchenko and V. A. Merzlyakov, “Calculation of thermo/elastoplastic nonaxisymmetric deformation of shells of revolution,” Prikl. Mekh. 24, No. 5, 43–53 (1988).

    Google Scholar 

  172. Yu. N. Shevchenko and A. Z. Galishin, “Axisymmetric thermo/visco/elastoplastic deformation of branched shell structures,” Prikl. Mekh., 25, No. 2, 35–44 (1989).

    Google Scholar 

  173. Yu. N. Shevchenko V. A. Merzlyakov, A. Z. Galishin, “Thermo/elastoplastic stressed state of shells of revolution stiffened by annular ribs,” Prikl. Mekh., 27, No. 1, 50–55 (1991).

    Google Scholar 

  174. Yu. N. Shevchenko S. V. Novikov V. A. Merzlyakov, et al., “On determination of the thermo/ elastoplastic stress-strain state of cyclindrical pipes with corrugated inserts,” Prikl. Mekh., 27, No. 8, 59–68 (1991).

    Google Scholar 

  175. Yu. N. Shevchenko I. S. Chernyshenko V. A. Merzlyakov, et al., “Plastichnost’-1 automatic computing system for study of the elastoplastic stressed state of shell structural elements on ES computers,” Probl. Prochn., No. 2, 90–96 (1993).

    Google Scholar 

  176. Yu. N. Shevchenko M. E. Babeshko, R. G. Terekhov, Thermo/Visco/Elastoplastic Processes of Compound Deformation of Structural Elements [in Russian], Naukova Dumka, Kiev (1992).

    Google Scholar 

  177. D. Bushnell, “BOSOR-5 program for buckling of elastic-plastic complex shells of revolution including large deformations and creep,” Comput. Struct. 6, No. 1, 221–239 (1976).

    MATH  Google Scholar 

  178. D. Bushnell, “Elastic-plastic bending and buckling of pipes and elbows,” Comput. Struct. 13, 241–248 (1981).

    Google Scholar 

  179. D. Bushnell, “PANDA interactive program for minimum weight design of stiffened cylindrical panels and shells,” Comput. Struct., 16, No. 1-4, 167–185 (1983).

    MATH  Google Scholar 

  180. D. Bushnell and E. Meller, “Elastic-plastic collapse of axially compressed cylindrical shells: a brief survey with particular application to ring-stiffened cylindrical shells with stiffend openings,” Trans. SAME, J. Pressure Vessel. Technol., 106 No. 1, 2–16 (1984).

    Google Scholar 

  181. G. A. Cohen, “Fasor—a second-generation shell-of-revolution code,” Comput. Struct., 10, No. 1-2, 101–109 (1979).

    Google Scholar 

  182. L. M. S. Dinis and D. R. J. Owen, “Elastic-viscoplastic and elastic-plastic large deflection analysis of thin plates and shells,” Int. J. Numer. Meth. Engng., 18, 591–657 (1982).

    MATH  Google Scholar 

  183. M. Esslinger and B. Geier, “A synopsis of two methods for calculating buckling loads of shells in the plastic region,” Z. Flugwiss. Weltraumforsch., 13, No. 2, 120–122 (1989).

    Google Scholar 

  184. M. Esslinger and G. Poblotzki, “Spannungs und stabilitatsrechnung von rotationsschalen unter nichtaxisymmetrischer, grossflaschiger belastung im elastoplastischen bereich,” Chem. Ing. Tech., 62, No. 9, 776–777 (1990).

    Google Scholar 

  185. P. G. Hodge and S. V. Nardo, “Carrying capacity of an elastic-plastic cylindrical shell with linear strain-hardening,” J. Appl. Mech., 25, No. 1, 79–85 (1958).

    MATH  Google Scholar 

  186. T. M. V. Kaiser A. E. Elbi, A. Mioduchowski, “A nonlinear finite element for modelling nonaxisymmetric behaviour,” Comput. Struct., 49, No. 2, 219–230 (1993).

    MATH  Google Scholar 

  187. P. V. Maracal and C. E. Turner, “Numerical analysis of the elastic-plastic behavior of axisymmetric shells of revolution,” J. Mech. Eng. Sci., 5, No. 3, 232–237 (1963).

    Google Scholar 

  188. N. Noda, “Thermal stresses in material with temperature-dependent properties,” Appl. Mech. Rev., 44, No. 9, 383–397 (1991).

    ADS  Google Scholar 

  189. A. K. Noor W. S. Burton and C. W. Bert, “Computational models for sandwich panels and shells,” Appl. Mech. Rev., 49, No. 3, 155–199 (1996).

    ADS  Google Scholar 

  190. H. Obrecht F. Schnabel, W. Wunderlicht, “Elastic-plastic creep buckling of circular cylindrical shells under axial compression,” ZAMM, 67, No. 4, 118–120 (1987).

    Google Scholar 

  191. D. R. J. Owen and J. A. Fugueiras, “Anisotropic elasto-plastic finite element analysis of thick and thin plates and shells,” Int. J. Numer. Meth. Engng., 19, No. 4, 541–566 (1983).

    MATH  Google Scholar 

  192. D. R. J. Owen and Z. H. Li, “Elastic-plastic analysis of laminated anisotropic shells by a refined finite element laminated model,” in: Comput. Mech.’ 88: Theory and Appl.: Proc. Int. Conf. Comput. Eng. Sci., Vol. 1, Atlanta (1988), pp. 24.II.I–24.II.4.

  193. M. Rogozinskii, “Some problems of thermoplasticity of a spherical shell,” in: Nonhomogeneity in Elasticity and Plasticity, Pergamon Press, London (1959), pp. 215–226.

    Google Scholar 

  194. Som P. Singh and R. L. Spilker, “Elasto-plastic analysis of axisymmetric structures subject to arbitrary load by hybrid-stress finite elements,” Comput. Struct., 19, No. 3, 447–465 (1984).

    MATH  Google Scholar 

  195. J. Spiekhout A. M. Gresnigt, G. M. A. Kusters, “The behaviour of a steel cylinder under the influence of a local load in the elastic and elasto-plastic area,” Lect. Notes Eng., 26, 329–336 (1987).

    Google Scholar 

  196. E. Stein B. Seifert, S. Ohnimus, “Adaptive finite element analysis of geometrically non-linear plates and shells, especially buckling,” Int. J. Numer. Meth. Engng., 37, No. 15, 2631–2655 (1994).

    MathSciNet  MATH  Google Scholar 

  197. K. Tao and S. Takezono, “Elasto/visco-plastic analysis of axisymmetrical shells under asymmetrical loading,” in: Trans. 5th Int. Conf. Struct. Mech. Reactor Technol. (1979), pp. M4.8/1–M4.8/8.

  198. S. Takezono and K. Tao, “Elasto/visco-plastic dynamic response of general thin shells to blast loads,” Bull. JSME, 25, No. 203, 728–735 (1982).

    Google Scholar 

  199. S. Takezono, K. Tao, and S. Nagano, “Elasto/visco-plastic analysis of orthotropic moderately thick shells of revolution,” in: Trans. 8th Int. Conf. Struct. Mech. Reactor Technol., Vol. 1 (1985), pp. 231–236.

  200. S. Takezono, K. Tao, and H. Uchibori, “Elasto/visco-plastic dynamic response of moderately thick shells of revolution under symmetrical loading,” in: Comput. Mech.’ 86: Theory and Appl.: Proc. Int. Conf., Vol. 2 (1986), pp. YI/41–YI/46.

  201. S. Takezono K. Tao, S. Hirofumi, “Elasto/visco-plastic analysis of orthotropic moderately thick shells of revolution under asymmetrical loading,” Trans. JSME, A53, No. 495, 2166–2173 (1987).

    Google Scholar 

  202. K. Tao, S. Takezono, and S. Nagano, “Elasto/visco-plastic analysis of moderately thick shells of revolution under asymmetrical loading,” in: Trans. 9th Int. Conf. Struct. Mech. Reactor Technol., Vol. B.-P., 605–611 (1987).

  203. S. Takezono K. Migita, A. Hirakawa, “Elasto/visco-plastic deformation of multi-layered shells of revolution,” JSME Int. J., Ser. 1, 31, No. 3, 536–544 (1988).

    Google Scholar 

  204. K. Tao, S. Takezono, and H. Uchibori, “Elasto/visco-plastic dynamic response of moderately thick shells of revolution under consideration of rotary inertia,” in: Comput. Mech.’ 88: Theory and Appl.: Proc. Int. Conf. Comput. Eng. Sci., Vol. 2, Atlanta (1988), pp. 41.11.1–41.11.4.

  205. S. Takezono K. Tao T. Taguchi, T. Mashiko, “Elasto/visco-plastic dynamic response of multi-layered shells of revolution,” Trans. JSME, A55, No. 518, 2065–2072 (1989).

    Google Scholar 

  206. K. Tao S. Takezono T. Taguchi, K. Hotada, “Elasto/visco-plastic dynamic response of axisymmetrical shells under mechanical and/or thermal loading,” JSME Int. J., Ser 1, 32, No. 3, 341–347 (1989).

    Google Scholar 

  207. K. Tao and S. Takezono, “Elasto/visco-plastic analysis of orthotropic moderately thick shells of revolution under asymmetrical loading,” in: Trans. 10th Int. Conf. Struct. Mech. Reactor Technol., Vol. B (1990), pp. 39–44.

  208. S. Takezono K. Tao, T. Taguchi, “Elasto/visco-plastic dynamic response of multi-layered moderately thick shells of revolution,” Trans. JSME, A56, No. 532, 2449–2456 (1990).

    Google Scholar 

  209. S. Takezono and K. Tao, “Elasto/visco-plastic dynamic response of thin shells of revolution subjected to mechanical or thermal loads or both,” Int. J. Pressure Vessels Piping. 44, No. 3, 309–327 (1990).

    Google Scholar 

  210. K. Tao and S. Takezono, “Analysis of elasto/visco-plastic dynamic response of general thin shells by means of overlay model,” JSME Int. J., Ser. 1, 33, No. 3, 326–333 (1990).

    Google Scholar 

  211. S. Takezono K. Tao, K. Tani, “Elasto/visco-plastic deformation of multi-layered moderately thick shells of revolution,” JSME Int. J., Ser. 1, 34, No. 1, 13–22 (1991).

    Google Scholar 

  212. S. Takezono K. Tao, E. Inamura, “Elasto/visco-plastic deformation of multi-layered shells of revolution under thermal loading due to fluid,” Trans. JSME, Ser. A, 60, No. 569, 220–228 (1994).

    Google Scholar 

  213. S. Takezono K. Tao T. Aoki, E. Inamura, “Elasto and viscoplastic deformation of shells of revolution under thermal loading due to fluid,” Trans. JSME Int. J., Ser. A, 38(2), No. 4, 185–193 (1995).

    Google Scholar 

  214. S. Takezono K. Tao E. Inamura, M. Inoue, “Thermal stress and deformation in functionally graded material shells of revolution under thermal loading due to fluid,” Trans. JSME Int. J., Ser. A, 39, No. 4, 573–581 (1996).

    Google Scholar 

  215. J. G. Teng and J. M. Rotter, “Elastic-plastic large deflection analysis of axisymmetric shells,” Comput. Struct., 31, No. 2, 211–235 (1988).

    Google Scholar 

  216. J. G. Teng and J. M. Rotter, “Non-symmetric bifurcation of geometrically nonlinear elastic-plastic axisymmetric shells under combined loads including torsion,” Comput. Struct., 32, No. 2, 453–475 (1989).

    MATH  Google Scholar 

  217. J. G. Teng and J. M. Rotter, “Nonsymmetric buckling of plate and pressure vessels,” Trans. SAME J. Pressure Vessel Technol., 111, No. 3, 304–311 (1989).

    Google Scholar 

  218. L. A. Winnicki and O. C. Zienkiewich, “Plastic (or visco-plastic) behaviour of axisymmetric bodies subjected to non-symmetric loading: semi-analytical finite element solution,” Int. J. Numer. Meth. Engng., 14, No. 9, 1399–1412 (1979).

    MATH  Google Scholar 

  219. W. Wunderlich, H. J. Rensch, and H. Obrecht, “Analysis of elastic-plastic buckling and imperfection sensitivity of shells of revolution,” in: Buckling Shells, Proc. State-of-the-Art Colloq., Univ. Stuttgart, Berlin (1982), pp. 137–174.

  220. W. Wunderlicht H. Cramer, H. Obrecht, “Application of ring finite elements in the nonlinear analysis of shells of revolution under non-axisymmetric loading,” Comput. Meth. Appl. Mech. Engng., 51, 259–275 (1985).

    ADS  Google Scholar 

  221. W. Wunderlicht, H. Obrecht, and W. Goebel, “Nonlinear dynamic analysis of shells of revolution using reduced basis techniques,” in: Numeta’ 87: Proc. Int. Conf. Numer. Mech. Eng.: Theory and Appl., Swansea, Vol. 2, 6–10 July (1987), pp. T.7/1-T.7/13.

  222. W. Wunderlicht, H. Obrecht, H. Springer, and Z. Lu, “Semi-analytical approach to the nonlinear analysis of shells of revolution,” Anal. Comput. Model Shell, Winter Annual Meeting ASME (1989), pp. 509–536.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Prikladnaya Mekhanika, Vol. 35, No. 5, pp. 3–38, May, 1999.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merzlyakov, V.A., Shevchenko, Y.N. Elastoplastic deformation of shells of revolution under nonaxisymmetric loading (review). Int Appl Mech 35, 431–461 (1999). https://doi.org/10.1007/BF03355405

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03355405

Keywords

Navigation