Skip to main content
Log in

Preparation and Characterization of Ultra-High-Purity Niobium

  • Extractive & Process Metallurgy
  • Published:
JOM Aims and scope Submit manuscript

Abstract

This paper presents a review of the efforts directed to the preparation of ultra-high-purity Nb published during the last 15 years. The interest in high-purity Nb has risen from the need for materials in high temperature and vacuum technology, superconductivity, solid state physics, and its potential in atomic energy fields. Depending on its many applications, the “purity” of Nb is understood in different ways. Based on results of known purification processes for Nb (e.g., liquid-liquid extraction of fluorides, distillation of halogenides, electrolysis in molten salts, electron beam float zone refining, electrotransport, and degassing in ultra high vacuum), an optimized method has been developed, consisting of electrolytic refining which results in single crystals, zone melting, and ultra high vacuum treatments. Material produced by the process has maximum impurity concentrations of 10−l ppm Ta, 2×10−3 ppm W, 4×10−6ppm Co, 2×10−3 ppm Fe, 10−5 ppm Cr, etc., with less than 1 ppm interstitials (C,N,O, except H) and a residual electrical resistivity ratio (RRR) of >104. To accurately determine residual impurity levels, improved analytical techniques were developed. Doping of the produced Nb with selected metallic (Cr,Mo,Hf,Ir) and nonmetallic elements (C, 0) on the ppm level served as both a calibration of the analytical techniques and an effort to tailor the physical properties. General aspects for the development of purification processes for refractory metals, sources of contamination during purification, sample preparation, and application of Nb, as well as the limiting bulk and surface purity of reactive metals are presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.G. Pfann, “Why Ultra-Pure Metals?,” in Ultra-High Purity Metals, American Society for Metals, Metals Park Ohio, Reinhold Publishing Corp., 1962, p. 1–11.

    Google Scholar 

  2. G. Horz, and E. Fromm, “Niob,” in Gase und Kohlenstoff in Metallen, ed. by E. Fromm and E. Gebhardt; Springer-Verlag, Berlin, 1976, p. 460–494.

    Google Scholar 

  3. E. Fromm, “Interaction of Oxygen and Nitrogen with Clean Transition Metal Surfaces,” Surface Science 79(1978) p. 259–275.

    Article  Google Scholar 

  4. J. Bigot, “Le Niobium,” in Monographies sur les metaux de haute purete, tome 2, ed. by G. Chaudron; Masson, Paris, 1977, p. 472–496.

    Google Scholar 

  5. G. Tölg, “Bulk and Distribution Analysis-Linked Strategy in Analytic Chemistry of High-Purity Materials,” Proc. 5th Int. Symp.: High Purity Materials in Science and Technology, Vol. II., Dresden, GDR, 1980, p. 53–73.

    Google Scholar 

  6. V. Krivan, “Entwicklungsstand und Bedeutung der Aktivierungsanalyse,” Angew. Chem. 91 (1979) p. 132–155.

    Article  Google Scholar 

  7. B.F. Schmitt, and H.U. Fusban, “Photon Activation Analysis of C, N and O in Refractory Metals,” in Proc. Int. Conf. The Analysis of Nonmetals in Metals, May 1980 Berlin, ed. by G. Kraft; Walter de Gruyter, Berlin 1981.

    Google Scholar 

  8. W.G. Faix, V. Krivan, and K. Schulze, “Ultratrace Analysis: Determination of Cr, Fe, and Co in the ppb and ppt Range for Checking the Preparation of High-Purity Niobium,” Angew. Chem. Int. Ed. Engl. 19 (3) (1980) p. 197–198.

    Article  Google Scholar 

  9. W.G. Faix, J.W. Mitchell, and V. Krivan, “Determination of Chromium, Iron and Copper in Niobium by Radiochemical Proton Activation Analysis,” J. Radioanal. Chem. 53 (1979) p. 97–106.

    Article  Google Scholar 

  10. W.G. Faix, and V. Krivan, “Determination of Chromium, Iron and Cobalt in High-Purity Niobium by Radiochemical Neutron Activation Analysis,” Z. Anal. Chem. 302 (1980) p. 269–274.

    Article  Google Scholar 

  11. V. Krivan, “Non-Reactor Activation Analysis: Recent Advances and Practical Significance,” Z. Anal. Chem. 290 (1978) p. 193–221.

    Article  Google Scholar 

  12. E. Grallath, “Contribution to the Analysis of Oxygen, Nitrogen and Carbon in Metals,” Z. Anal. Chem. 300(1980) p. 97–106.

    Article  Google Scholar 

  13. M. Winterkom, K. Schulze, and G. Tolg, “Die Bestimmung kleinster N,- und CO-Gehalte in hochschmelzenden Metallen durch tiegelfreie Heiss-extraktion im Ultrahoch-vakuum,” Mikrochimica Acta. Suppl. 7 (1977) p. 27–39.

    Article  Google Scholar 

  14. K. Schulze, E. Grallath, and M. Weller, “Zur Sauerstoffbestimmung in Niob durch Heissextraktion, elektrischer Restwiderstand und innere Reibung,” in Proc. Int. Conf. The Analysis of Nonmetals in Metals, May 1980, Berlin, ed. by G. Kraft; Walter de Gruyter, Berlin 1981.

    Google Scholar 

  15. K. Schulze, “Purification, Doping and Analysis of High Melting Metals,” Fizika i Khimia Obrabotkii Materialov, Akad. Nauk. SSSR 5 (1978) p. 52–60.

    Google Scholar 

  16. W. Werner, and G. Tolg, “Optimierung der Kjeldahl-Methode zur Bestimmung von Stickstoff in Reinstmetallen,” Z. Anal. Chem. 276 (1975) p. 103–110.

    Article  Google Scholar 

  17. K.H. Berthel, “Supraleitung in reinem Niob,” in Reinststoffe in Wissenschaft und Technik, ed. by M. Balarin; Bd. IV, 3. Int. Symposium Reinststoffe in Wissenschaft und Technik, Akad.-Verlag, Berlin 1972, p. 71–82.

    Google Scholar 

  18. G.W. Webb, “Low-Temperature Electrical Resistivity of Pure Niobium,” Phys. Rev. 181 (3) (1969) p. 1127–1135.

    Article  Google Scholar 

  19. K.H. Berthel, D. Eckert, and W. Holzhauser, “Ergebnisse komplexer Untersuchungen an Niob-Einkristallen im Hinblick auf die supraleitenden Eigenschaften,” in Reinststoff-probleme V, ed. by M. Balarin; 4. Int. Symp. Reinststoffe in Wissenschaft und Technik, Akad.-Verlag, Berlin 1975, p. 552–563.

    Google Scholar 

  20. J. Fuss, K. Schulze, and H. Schultz, “Deviations from Matthiesens Rule in Nitrogen Doped Niobium,” J. Phys. F.: Metal Phys. 8 (3) (1978) p. 497–500.

    Article  Google Scholar 

  21. K. Schulze, J. Fuss, H. Schultz, and S. Hofmann, “Einfluss-interstitieller Fremdatome aud den Restwiderstand von reinem Niob,” Z. Metallkde, 67 (11) (1976) p. 737–743.

    Google Scholar 

  22. K. Faber, and H. Schultz, “H-Contamination in Tantalum and Niobium Following UHV-Degassing,” Scripta Met. 6 (1972) p. 1065–1070.

    Article  Google Scholar 

  23. J. Barthel, K.-H. Berthel et al., “Superconductivity and Electron Structure of Super-pure Niobium,” Fiz. metall. metalloved. 35 (1973) p. 921–931.

    Google Scholar 

  24. R.W. Meyerhoff, “Preparation and Electrical Resistivity of Ultrahigh Purity Niobium,” J. Electrochem. Soc. 118(1971) p. 997–1001.

    Article  Google Scholar 

  25. Standard Specification for Primary Niobium Metal. ASTM Designation B 383–64, Approved May 15, 1973, American National Standards Institute.

    Google Scholar 

  26. M. Weller, G.Y. Li, J.X. Zhang, T.S. Ke, and J. Diehl, “Accurate Determination of Activation Enthalpies with the Stress-Induced Migration of Oxygen or Nitrogen in Tantalum and Niobium,” to be published in Acta Metallurgica, 1981.

    Google Scholar 

  27. K. Schulze, E. Grallath, and M. Weller, “Determination of Oxygen in Niobium by Hot-Extraction, Electrical Resistivity and Internal Friction,” to be published in Z. f. Metallkde. 1981.

    Google Scholar 

  28. S. Senderoff, and G.W. Mellors, “Electrodeposition of Coherent Deposits of Refractory Metal, I. Niobium,” J. Electrochem. Soc. 112 (1965) p. 266–272.

    Article  Google Scholar 

  29. K. Schulze, E. Fromm et al., “Zur Reinstdarstellung von Niobeinkristallen durch elek-trolytisches Wachstum, Elektronenstrahl-Zonenschmelzen und Elektrotransport,” in Reinstoffprobleme V, ed. by M. Balarin; 4. Int. Symp. “Reinststoffe in Wissenschaft und Technik,” Akad.-Verlag, Berlin 1977, p. 205–222.

    Google Scholar 

  30. W. Rockenbauer, “Herstellung von Niob und Tantal durch Schmelzflusselektrolyse,” Chemie-Ing. Techn. 41 (1969) p. 159–162.

    Article  Google Scholar 

  31. S. Senderoff, and G.W. Mellors, “The Electrodeposition of Coherent Deposits of Refractory Metals, IV. The Electrode Reactions in the Deposition of Niobium,” J. Electrochem. Soc. 113 (1966) p. 66–71.

    Article  Google Scholar 

  32. L. Kuchar, P. Duzi, and B. Wozniaková, “Gleichgewichtsverteilungskoeffizienten in Molybda’n und Niob.” Neue Hütte 21 (1976) p. 297–300.

    Google Scholar 

  33. R.E. Reed, “Redistribution of Ta and W Impurities in Niobium by Electron Beam Float Zone Refining,” J. Crystal Growth 19 (1973) p. 61–64.

    Article  Google Scholar 

  34. R.E. Reed, C.W. Dean, R.E. McDonald, and F. Emery, “Sources of Contamination during Electron-Beam Melting (Nb),” ORNL Report TM 2208, 1968.

    Google Scholar 

  35. R.E. Reed, “Electron Beam Float Zone Melting and Vacuum Degassing of Niobium Single Crystals,” J. Vac. Sci. Technol. 9 (1972) p. 1413–1418.

    Article  Google Scholar 

  36. D.C. Briggs and S. Saimoto, “Ultra-High-Vacuum Purification of Large Niobium Crystals,” Jap. J. of Applied Physics 14 (1975) p. 113–121.

    Article  Google Scholar 

  37. V.G. Glebovskii, V.V. Grinevitsh, and B.M. Shipilevskii, “Vacuum Zone Refining of Niobium,” in Monokristally Tugoplavkich i Redkich Metallou, Splavov i Soedinenii, ed. by J.V. Tananae et al.; 8th Moskva, 1976, p. 14–18 (in Russian).

    Google Scholar 

  38. G.I. Nicolaev and N.V. Bodrov, “Study by Atomic Absorption of the Evaporation of Aluminium Impurities from Tantalum and Niobium,” Russ. J. of Phys. Chem. 52 (1978) p. 821–822.

    Google Scholar 

  39. H. Jehn, and E. Olzi, “Zirconium Depletion Profiles in a Nb-5 at.% Zr Alloy after High-Temperature Vacuum Annealing,” High Temp.-High Pressures 12 (1980) p. 85–92.

    Google Scholar 

  40. K. Schulze, and H. Jehn, “Sauerstofflb’slichkeit in Niob im stationaren Zustand,” Z. Metallkde. 68 (1977) p. 654–660.

    Google Scholar 

  41. K. Schulze, and H. Jehn, “Steady State p-T-c Relations in VA-Metals,” in Proc. 8th Int. Vacuum Congress II, ed. by J.P. Langeron and K. Maurice; Cannes, 1980, p. 554–557.

    Google Scholar 

  42. B.M. Shipilevskii, and V.G. Glebovskii, “The Carbon-Oxygen Interaction during Degassing of Molten Refractory Metals,” Preprint. Akad. Nauk, SSSR, Solid State Physics Institute, Chernogolovka, 1980.

    Google Scholar 

  43. G. Hörz, and K. Lindenmaier, “Kinetic der Entkohlung von Niob im Sauerstoffstrom durch Kohlenmonoxidabgabe,” Z. Metallkde. 63 (1972) p. 240–247.

    Google Scholar 

  44. W. Grunwald, F. Haessner, and K. Schulze, “Ein Verfahren zur Bestimmung kleinster Stickstoffgehalte in Niob durch Vakuum-Heissextraktion,” J. the Less-Common Met. 48 (1976) p. 325–344.

    Article  Google Scholar 

  45. E. Fromm, and O. Mayer, “Interaction of Oxygen and Nitrogen with Clean Transition Metal Surfaces,” Surface Science 74 (1978) p. 259–275.

    Article  Google Scholar 

  46. M. Grunder, and J. Halbritter, “XPS and AES Studies on Oxide Growth and Oxide Coatings on Niobium,” J. Appl. Phys. 51(1980) p. 397–405.

    Article  Google Scholar 

  47. K. Schulze, and M. Hormann, unpublished results.

  48. P. Boisot et al., “Einfluss der Oberflachenvorbehandlung der Proben auf die Bestimmung von Sauerstoff in NE-Metallen,” in Techn.-wirtschaftl. Bericht Nr. 76, Commission of the European Communities, 1972.

    Google Scholar 

  49. K.H. Klatt, J.M. Welter, and H. Wenzl, “Versiegelung von Niobfolien gegen reaktive Gase,” Z. Metallkde. 67(1976) p. 568–572.

    Google Scholar 

  50. A. Seeger, “Positive Muons-A Novel and Promising Tool for the Analysis of Trace Imperfections in Metals,” in Proc. 5th Int. Symp. High Purity Materials in Science and Technology, Vol. 2, ed. by Akad. d. Wissenschaften der DDR, Dresden, GDR, 1980, p. 253–268.

    Google Scholar 

  51. T.O. Niinikoski, O. Hartmann, E. Karlsson, L.O. Norlin, K. Pernestal, K.W. Kehr, D. Richter, E. Walker, and K. Schulze, “Muon Diffusion in Niboium in the Presence of Traps,” Hyperfine Interactions 6 (1979) p. 229–232.

    Article  Google Scholar 

  52. J.A. Brown, R.H. Heffner, M. Leon, D.M. Parkin, M. Schillaci, W.B. Gauster, A.T. Fiory, W.J. Kossler, H.K. Birnbaum, A.B. Denison, D.W. Cooke, “Muon Diffusion and Trapping in High-Purity and O-doped Nb,” Hyperfine Interactions 6 (1979) p. 233–236.

    Article  Google Scholar 

  53. E.E. Schumacher, “Metallurgy behind the Decimal Point,” Trans. AIME 188 (1950) p. 1097.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper was presented at the Extractive Metallurgy of Refractory Metals Conference at the 1981 AIME Annual Meeting in Chicago, Illinois.

Klaus K. Schulzeis senior scientist at the Max-Planck-lnstitut fur Metallforschung, Stuttgart, West Germany. He received his MSc in iron and steel metallurgy and his PhD in metallurgy from the Technical University of Clausthal in 1967 and 1971 respectively. He joined the MPI in Stuttgart in 1967, and served as a visiting professor at the University of Campinas, Brazil, in 1978. Since 1979 he has been a member of the advisory board of the Foundation for Industrial Technology (FTI) of the Brazilian Government, in the field of refractory metals. His research interests include methods for ultrapurification of metals, metal-gas reactions, thermodynamic properties of refractory metal alloys, analytical chemistry of non-metals, and the toxicology of beryllium. He is a member of TMS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulze, K.K. Preparation and Characterization of Ultra-High-Purity Niobium. JOM 33, 33–41 (1981). https://doi.org/10.1007/BF03354422

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03354422

Keywords

Navigation