Skip to main content
Log in

Lead, Zinc & Tin

  • Annual Review: Commodity Metal
  • Published:
JOM Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Anon., “Lead Recycle.” Petroleum Gazette (Australian Institute of Petroleum), Nov. 1977, p. 151.

    Google Scholar 

  2. Ref. 8, p. 102.

  3. Ref. 8, p. 5–39.

  4. Ref. 8, p. 60–93.

  5. International Tin Symposium, La Paz, November 1977. (Microfilm of papers available from Centro de Documentacion, P.O. Box 8686, La Paz, Bolivia).

  6. ed. Jones, M. J., “Advances in extractive metallurgy 1977. (Instn. Min & Met., London, 1977, 244 pp.).

  7. Extractive Metallurgy Symposium, Univ. of N.S.W., Nov. 1977. (Microfiche available from The Secretary, School c Metallurgy, Univ. of N.S.W., P.O. Box 1, Kensington, N.S.W., Australia.)

  8. Metallgesellschaft Review of Activities, Edition 20-1977: “Lead-Materialwith a Future.” (Metallgesellschaft, Frankfui 1977, 119 pp.)

  9. Goliasch, G. & Mazcek, H., “Review of the status of le; smelting at Metallgesellschaft.” Idem, p. 40–45.

  10. Schwartz, W., “The future of lead recovery.” Idem, p. 46–55.

  11. Ebeling, G. K. A., Massion, W. P. J. & Michaelis, H. A. “Location and structural considerations for present-day lea producing plants.” Idem, p. 56–59.

  12. Sychev, A. P., “The main theme in technical progress in lead metallurgy.” Tsvet. Met. 16, No. 11, p. 7–10 (Eng. trans. 48, Nov. 1975 (in Russian).

    Google Scholar 

  13. Petersson, S. & Ericksson, S., “Autogenous smelting of lei concentrates in TBRC.” AIME T.P. A77–11, 1977.

    Google Scholar 

  14. Melin, A., “Gegenwärtiger Stand der Verhüttung von Akkuschrott.” Metall 31 (2), 1977, p. 133–137 (in Germai

    Google Scholar 

  15. Anon., “Bergsoe’s SB furnace.” Metal Bull. Monthly, Oc 1976, p. 59–63.

    Google Scholar 

  16. Mackey, T. S. & Bergsoe, S., “Smelting of unbroken batteries.” AIME T.P. A77–107, 1977.

    Google Scholar 

  17. Mackey, T. S. & Bergsoe, S., “Flash agglomeration of flat dust.JOM 29, Nov. 1977, p. 12–15.

    Google Scholar 

  18. Tarasenko, M. M., “Composition and properties of secondary lead materials for sintering.” Tsvet. Met. 16, No 11, p. 38–39 (Eng. trans.); 48, Nov. 1975 (in Russian).

  19. Lyons, L. A. & Gillett, D. B., “The new secondary lead smelter of Simsmetal, Brooklyn, Victoria, Australia.” Ref. p. 105–110.

  20. Steintveit, G. & Lindstad, T., “Smelting of lead-silver residue and jarosite precipitate.” Ref. 6, p. 7–12.

  21. Suzuki, T.; Uchida, H., Pickering, R. W. & Matthew, I. G “Electric smelting of lead sulphate residues.” AIME T.P. A77–21, 1977.

    Google Scholar 

  22. Nakamura, H., Hirakawa, S. & Nomura, E., “Electrothermic slag-fuming process and zinc leach residu treatment by lead blast furnace of Kamioka smelter.” AIM T.P. A77–9, 1977.

    Google Scholar 

  23. Gerberding, A. & Harms, U., “Verwendung und Ruckgewinnung von Blei und Zink in der Bundesrepubli Deutschland.” Metall 30, 1976, p. 1205–1208 (in German

    Google Scholar 

  24. Bear, I. J., “Electrodes from lead sulphide concentrates Trans. (Brit.) I.M.M. 85, 1976, p. C49–51.

    Google Scholar 

  25. Scott, P. D. & Nicol, M. J., “Kinetics of non-oxidative dissolution of galena in acidic chloride solutions.” Trans. (Brit.) I.M.M. 85, 1976, p. C40–44.

    Google Scholar 

  26. Torma, A. E. & Subramanian, K. N., “Selective bacteria leaching of a lead sulphide concentrate.” Int. J. Min. Proces 1, 1974, p. 125–134.

    Article  Google Scholar 

  27. Holtkamp, U., “Die Bildung von Schlicker bei der Verarbeitung von Werkblei wechselnder Zusammensetzung.” Erzmetall 29, 1976, p. 487–494 (in German).

    Google Scholar 

  28. Roos, J. R., Belis, F. & Wollants, P., “The mechanism decoppering lead with sulphur.” AIME T.P. A77–15 (1977)

    Google Scholar 

  29. Belis, F., Verwimp, W. & Roos, J. R., “Decopperising lea with sulfur. Influence of deficient sulfides.” Met. Trans. 7 p. 149–150.

  30. Clark, I. S. R., Baker, L. A. & Jenkins, A. E., “Decoppering of lead alloys with sulfur: 2—reactions in the Pb + Cu + A and Pb + Cu + Sn systems.” Trans. (Brit.) I.M.M. 82, 1973: p. C1–9.

    Google Scholar 

  31. Pereiro, E. F. & Campos, V. F., “Kinetics of the decoppering of lead.” Metalurgia 32, Feb. 1976 (in Portuguese).

  32. Hopkin, W., “The processing of copper-lead dross and matte and its impact on copper-zinc-lead management.” Second Intl. Symposium, “Management of Copper Resources.” Lubin, Poland, 27–28 April, 1977.

    Google Scholar 

  33. Lawson, F., Kelly, R. G. & Ward, D. H., “Continuous sulphur drossing of lead.” Ref. 6, p. 185–9.

  34. Iley, J. D. & Ward, D. H., “Development of acontinuov process for the fine debismuthising of lead.” Ref. 6, p. 133–9

  35. Moodie, J. M., “Debismuthising of lead.” M. Appl. Sc. Thesis, University of Melbourne, 1976.

    Google Scholar 

  36. Castle, J. F. & Richards, J. H., “Lead refining: current technology and a new continuous process.” Ref. 6, p. 217–234.

  37. Denholm, W. T., Dorin, R. & Gardner, H. J., “Electrolytic removal of bismuth from lead by molten sodium hydroxide.” Ref. 6, p. 235–244.

  38. Krasnoschchekova, S. A., Smirnov, M. P. & Beletskii, G. V., “Design of industrial apparatus for liquation refining of lead.” Tsvet. Met. 16, No. 9, p. 24–25 (Eng. trans.); 48, Sep. 1975 (in Russian).

    Google Scholar 

  39. Esyutin, V. S. & Nurgaliev, D. N., “Continuous vacuum distillation apparatus for purifying lead.” Tsvet. Met. 16, No. 12, p. 32–34 (Eng. trans.); 48, Dec. 1975 (in Russian).

  40. Heubner, U. & Ueberschaer, A., “Verfahren zur Bestimmung der Verkrätzungsneigung von Bleischmelzen.” Erzmetall 30, 1977, p. 256–261.

    Google Scholar 

  41. Davey, T.R.A. & Willis, G. M., “Extractive metallurgy of lead-zinc-tin.” JOM 29, No. 3, March 1977, p. 24–30.

    Google Scholar 

  42. Abadir, M. F., Gadala, A. M. & El Agamawi, V. M., “Equilibrium relationships in the system lead-oxygen. ” Trans. Jl. Brit. Ceramic Soc. 75, No. 4, 1976, p. 68–70.

    Google Scholar 

  43. Kapoor, M. L. & Frohberg, M. G., “Activity of lead oxide in the system sodium oxide-lead oxide-silica.” Met. Trans. 8B, 1977, p. 15–18.

    Article  Google Scholar 

  44. Willis, G. M., “Thermodynamics of metal-sulphur melts.” Ref. (7).

  45. Shamsuddin, “Thermodynamic studies on lead sulfide.” Met. Trans. 8B, 1977, p. 349–352.

    Article  Google Scholar 

  46. Esdaile, J. D., “The thermodynamic properties and phase diagram of the system lead-zinc.” Ref. 7.

  47. Moser, Z., Komarek, K. L. & Mikula, A., “Thermodynamics and phase diagram of the lead-antimony system.” Z. Metallkunde 67, 1976, p. 303–306 (in English).

    Google Scholar 

  48. Mehrotra, G. M., Frohberg, M. G. & Kapoor, M. L., “Determination of activities in liquid lead-bismuth alloys.” Z. Metallkunde 67, 1976, p. 186–188 (in English).

    Google Scholar 

  49. Kozlovskii, A. A., “Behaviour of arsenic in the production of non-ferrous metals.” Tsvet. Met. 16, No. 11, p. 21–24 (Eng. trans.); 48, Nov. 1975 (in Russian).

    Google Scholar 

  50. Kozyrev, V. S., Rezkova, F. I., Sobachkin, V. N. & Plotkin, A. N., “Problems associated with arsenic in the copper and lead-zinc industries.” Idem, No. 12, p. 36–38; 1975.

    Google Scholar 

  51. Müller, E., “How Kivcet CS shaft furnace simultaneously smelts Pb-Zn.” World Mining 30, No. 4, Apr. 1977, p. 46–49, 99.

    Google Scholar 

  52. Sychev, A. P., “Oxygen-electrothermic technology for the treatment of lead concentrates in a Kivcet-CS plant.” Tsvet. Met. 50, No. 8, Aug. 1977, p. 8–15 (in Russian).

    Google Scholar 

  53. Sychev, A. P., Feldman, V. G., Cherednik, I. M., Polyakov, I. P. & Kim, G. V., “Behaviour of sulfidic lead-zinc concentrates during roasting-smelting.” Sb. Tr. VNIIT svetmet 25, 1975, p. 204–209 (in Russian).

    Google Scholar 

  54. Chaudhuri, K. B. & Webb, I. D., “The smelting of complex sulphide concentrates by the Kivcet process.”, Acapulco, Oct. 16–20, 1977.

  55. Chaudhuri, K. B. & Melcher, G., “Comparative views on the metallurgy of the Kivcet-CS and other direct lead smelting processes.” C.I.M. Annual Meeting, Vancouver, 1977.

    Google Scholar 

  56. Sychev, A. P., Kopylov, N. I., Novosdova, V. N., Polyakov, I. P. & Pestunova, N. P., “Behaviour of sulfidic lead-zinc concentrates during roasting-smelting.” Sb. Tr. VNIITsvetmet 25, 1975, p. 204–209 (in Russian).

    Google Scholar 

  57. Sychev, A. P., Larin, V. F. & Polyakov, I. P., “A study of the interaction between sulfide lead and oxide lead dissolved in a slag melt.” Idem. p. 196–203.

  58. I.S.P. Ltd., “Technicalpublications on the Imperial Smelting Process: 15th Addendum: Bibliography.” (I.S.P. Ltd., Avonmouth, England, 1977).

    Google Scholar 

  59. Maczek, H., Rellermeyer, H., Kossak, G. & Serbent, H., “Tests for processing metallurgical wastes using industrial plant.” Stahl und Eisen 96, 1976, p. 1233–1238 (in German).

    Google Scholar 

  60. Serbent, H. & Lommert, H., “Lurgi’s rotary kiln processes for the treatment of steel plant waste oxides.” Paper presented at British Steel Corp’s. Ladgate Labs., Oct. 27, 1977.

    Google Scholar 

  61. Smicszek, Z. & Pajak, W., “Application of rotary furnaces for processing lean zinc-lead raw materials.” Ref. 6, p. 197-200.

  62. Gammon, M. W., “Heat and mass transfer in the tuyere region of a zinc-lead blast-furnace: metal studies.” Ref. 6, p. 47-52.

  63. Firkin, G. R. & Still, R. F., “Injection of fuel oil through the tuyeres of an Imperial Smelting Furnace.” Ref. 7.

  64. Shoobridge, P. H., Sangster, J. W., Hurley, R. E. & Brown, N. A., “The influence of non-recovery coke oven operating parameters on coke reactivity and properties.” Ref. 7.

  65. Petersson, S., Norro, A. & Ericksson, S., “Treatment of lead-zinc containing dust in a TBRC.” AIME T.P. A77–12, 1977.

    Google Scholar 

  66. Yakovenko, A. A., Shabalena, R. I., Gavrilenko, A. F. & Lakernik, M. M., “Study of limiting stage of zinc reduction from slag melts.” Tsvet. Met. 16, No. 11, p. 31–33 (Eng. trans.); 48, Nov. 1975, (in Russian).

    Google Scholar 

  67. Swanson, R., “Extraction of zinc and lead from their sulfides.” U.S. Patent 3, 957, 503. May 6, 1974 (May 18, 1976).

    Google Scholar 

  68. Peters, E., “Direct leaching of sulfides; chemistry and applications.”. Met. Trans. 7B, 1976, p. 505–517.

    Article  Google Scholar 

  69. Anaconda Co., U.S. Patent 3, 954, 450, 26 Mar, 1975 (4 May, 1976).

    Google Scholar 

  70. Haver, F. P. & Wong, M. M., “Ferric Chloride-brine leaching of galena concentrate.” U.S.B.M. R.I. 8105, 1976.

  71. Scheiner, B. J., Thompson, D. C., Smyres, G. A. & Lindstrom, R. E., “Chlorine-oxygen leaching of complex sulfide concentrates.” AIME T.P. A79–86, 1977.

    Google Scholar 

  72. Murphy, J. E., Haver, F. P. & Wong, M. M., “Preparation of lead by fused-salt electrolysis.” Proc. Ind. Symp. on Metal-Slag-Gas Reactions and Processes, Toronto, 11-16 May, 1975, p. 1012–1020.

    Google Scholar 

  73. U.S.B.M., U.S. Patent, 3, 962, 050, June 8, 1976.

    Google Scholar 

  74. Haver, F. P., Shanks, D. E., Bixly & Wong, M. M., “Recovery of zinc from zinc chloride by fused-salt electrolysis.” U.S.B.M. R.I. 8133, 1976.

    Google Scholar 

  75. Kellogg, H. H., “Conservation and metallurgical process design.” Trans. (Brit.) I.M.M. 88, 1977, p. 647–57.

    Google Scholar 

  76. Davey, T. R. A. Discussions. Ref. 6, Supplement (1977).

  77. Tasmanian Conference, 1977 (Australas. Inst. Min. & Met., Parkville, Victoria, Australia, 1977. 401 pp.).

    Google Scholar 

  78. Gordon, A. R., “Improved use of raw material, human and energy resources in the extraction of zinc.” Ref. 6, p. 153-160.

  79. Connolly, M. L., Honey, R. N. & Krauss, C. J., “High productivity zinc electrowinning plant.” Can. I.M. Bull. No. 782, 1977, p. 144–151.

    Google Scholar 

  80. Matthew, I. G. & Eisner, D., “The hydrometallurgical treatment of zinc silicate ores.” Met. Trans. 8B, 1977, p. 73–83.

    Article  Google Scholar 

  81. Matthew, I. G. & Eisner, D., “The processing of silicate ores–a review.” Met. Trans. 8B, 1977, p. 85–91.

    Google Scholar 

  82. Wood, J. T., Kern, P. L. & Ashdown, N. C., “Electrolytic recovery of zinc from oxidised ores” AIME T.P. A77–17, 1977.

    Google Scholar 

  83. Ethem, M. Y., “Turkish lead, zinc and antimony mines are small and widespread.” World Mining 30, No. 8, 1977, p. 50–53.

    Google Scholar 

  84. Lightfoot, R., “Fluid-bed roasting of zinc concentrate at Risdon, Tasmania,” Ref. 77, p. 359-365.

  85. Claude, J. M., Zanne, M., Gleitzer, C. & Aubry, J., “Study of the system Fe, xO.ZnO at 900°C..” Rev. Met. 74, No. 4, 1977, p. 229-236.

    Google Scholar 

  86. Pammenter, R. V., Kershaw, M. G. & Maugham, R. C. A., “The elimination of nickel from zinc plant solutions using dimethylglyoxime.” Ref. 77, p. 291-298.

  87. Johnson, A., Matthew, I. G. & Hall, P. G., “The development and application of the selective zinc precipitation process for controlling impurities in electrolytic zinc plant circuits.” Ref. 77, p. 299-307.

  88. Harris, L., Hanson, A. K. & Deguire, M. F., “A process for removing manganese from zinc electrolytes.” AIME T. P.. A77–5, 1977.

    Google Scholar 

  89. Karoleva, V., Abrascheva, B. & Georgiev, G., “Behaviour of arsenic, antimony and indium in the hydrolytic procipitation of iron.” Neu Hiitte 22, 1977, p. 131–133 (in German).

    Google Scholar 

  90. Van der Zeeuw, A. J., “Purification of zinc calcine leach solutions by exchange extraction with the zinc salt of versatic acid.” Hydrometallurgy 2, 1976/7, p. 275–284.

    Article  Google Scholar 

  91. Yaraslavtsev, A. S., Ful’man, N. I., Devchich, I. I. & Mironov, Y. M., “Production of zinc of increased purity under industrial conditions.” Tsvet. Met. 16, No. 8, p. 19–20 (English trans.); 48, Aug. 1975 (in Russian).

    Google Scholar 

  92. Kiryakov, G. Z., Pilipchuk, N. A., Bundzhe, V. G. & Brandt, A. G., “Migration of lead to the cathode from lead-based anodes.” Tsvet. Met. 16, No. 8, p. 21–22 (Eng. trans.); 48, Aug. 1975 (in Russian).

    Google Scholar 

  93. Bratt, G. C., “A view of zinc electrowinning theory.” Ref. 77, p. 277-290.

  94. Hutchison, R. F. & Phipps, P. J., “Formation and particle size of jarosite.” Ref. 77, p. 319-327.

  95. Haigh, C. J., Oakes, I. & Garrigan, J. S., “Residue treatment plant practice at au]Risdon, Tasmania.” Ref. 77, p. 339-349.

  96. Kershaw, M. G. & Haigh, C. J., “Regeneration of 2-napthol from cobalt precipitate.” Ref. 77, p. 309-317.

  97. Newman, O. M. G., Bratt, G. C., Langlois, D. R. & Horsham, T. R., “Precipitation of mercury from process liquors with aluminium.” Ref. 77, p. 49-58.

  98. Adams, R. W., “Pilot plant treatment of waste liquors at Risdon.” Ref. 77, p. 59-70.

  99. Bull, L. R., “Environmental effluent control at Rosebery.” Ref. 77, p. 71-85.

  100. Weigand, V. & Hanusch, K., “Stand und Entwicklungsrichtungen der hydrometallurgischen Zinkgewinnung.” Erzmetall 30, 1977, p. 135-139.

  101. Yamamoto, “Silver recovery from zinc residue.” AIME T.P. A77–17, 1977.

    Google Scholar 

  102. Cleland, J. H. & Fray, D. J., “Electrolytic refining of lead-zinc alloys by use of packed-bed electrodes.” Ref. 6, p. 141–146.

  103. Ettel, V. A., “Energy requirements in electrolytic winning and refining of metals.” Can. I.M. Bull. 70, No. 783, July 1977, p. 179–186; Discussion. Idem. p. 186-187.

    Google Scholar 

  104. Grigoriev, V. D., “Zinc distillation in a d.c. electrical field.” Tsvet. Met. 16, No. 3, p. 25–26 (Eng. trans.);48, Mar. 1975 (in Russian).

    Google Scholar 

  105. Kerschanskii, I. I., Kopach, V. G. & Kuur, V. D., “An electrothermal method of processing zinc dross, with the zinc condensed into molten metal.” Tsvet. Met. 16, No. 4, p. 18–19 (English trans.); 48, Apr. 1975 (in Russian).

    Google Scholar 

  106. Ortiz, H., “Desarollo de la industria estanifera Boliviana.” Ref. 5, 1977 (in Spanish).

  107. Kasmir, A. B., “Tin Smelting in Indonesia.” Idem.

  108. Lema, J. “Le fundicion de estano de baja ley en el complejo metalurgico de Vinto.” Idem (in Spanish).

  109. Lema, J. & Montoya, L., “Refinacion electrolytica de estano en Vinto.” Idem (in Spanish).

  110. Mackey, T. S., “Update in tin smelting and refining technology.” Idem.

  111. King, E. B. & Pommier, L. W., “The future of the Texas City Tin Smelter.” Idem.

  112. Joffre, J., “Ideas y sugerencias sobre la introduccion de neuvas technicas in la metalurgia extractiva del estano.” Idem (in Spanish).

  113. Weigel, H., “Continuous tin smelting, a new system based on gas reduction.” Idem.

  114. Katkov, O. M., “Tests on a technique for the continuous smelting of tin concentrates in an electric furnace.” Tsvet Met. No. 5, p. 28–31 (English trans.); 44, May 1971 (in Russian).

    Google Scholar 

  115. Davey, T. R. A., “The Fe-Sn phase diagram, and its practical consequences in tin smelting and refining.” Ref. 5, 1977.

  116. Joffre, J., “Consideraciones termodinamicasde lareducion del estano.” Idem (in Spanish).

  117. Bohoe, R.J., “New generation refractories for tin smelting in reverberatory furnaces.” Idem.

  118. Denholm, W. T. & Foo, K. A., “Matte fuming of tin from sulphidic ores.” Idem.

  119. Montes de Oca, S., “Concentracion pirometalurgica del estano mediante volatilizacion.” Idem (in Spanish).

  120. Montes de Oca, S., “Volatilizacion de minerales complejos de estano—plomo-zinc.” Idem (in Spanish).

  121. Wuth, W., “Volatilizacion de estano por el metodo top blowing.” Idem (in Spanish).

  122. Siemon, J. R. & Floyd, J. M., “The treatment of liquid tin slags by submerged combustion reduction.” Idem.

  123. Wright, P. A., “Possible developments in the tin sulphide fuming process.” Idem.

  124. Guzman, S. S. & Guzman, S. S., “Segregacio de estano.” Idem, (in Spanish).

  125. Padilla, R., Joffre, J. & Fernandez, J., “Eliminacion de bismuto de concentratos de estano por tostacion clorurante.” Idem, (in Spanish).

  126. Esdaile, J. D., “The purification of tin by crystallization and reflux.” Idem.

  127. Lema, J., Martinez, G. & Morales, J., “Optimizacion tecnico economica para el tratamiento de minerales de estano.” Idem, (in Spanish).

  128. Müller, E., “Verflüchtigung von Zinn aus armen schwefelhaltigen Konzentraten im Zyklonofen.” Erzmetall 30 (1976) p. 54–68 (in German).

    Google Scholar 

  129. Severin, G., Brandt, K.-H. & Behrendt, H.-P., “Technologische Entwicklungstendenzen bei der Verarbeitung von Zinnerzen aus primären Lagerstätten.” Neue Hütte 20, 1975, p. 752–757 (in German).

    Google Scholar 

  130. Stolz, E. C., “Note; An electric tin smelter for the processing of low-grade tin concentrates in South Africa.”. J. S. African I.M.M., Nov. 1975, p. 91–2.

    Google Scholar 

  131. Uys, H. A., “The metallurgy of tin smeltingin a submerged arc furnace.”. J. S. African I.M.M., Jan. 1977, p. 121–5.

    Google Scholar 

  132. Wright, P. A., “Optimisation of the standard tin smelting circuit,’ Advances in extractive metallurgy and refining. (Instn. Min. & Met., London, 1972, 635 pp.) p. 467–480.

    Google Scholar 

  133. Davey, T. R. A. & Ginatta, M. V., “Optimization of tin smelting using a computer.” Idem., p. 437-501.

  134. Pommier, L. W., “The effect of coke in the volatilisation of tin.” AIME T.P. A77–13, 1977.

    Google Scholar 

  135. Holt, G. & Pearson, D., “Hydrometallurgical process for recovery of tin from low-grade concentrates.” Trans. (Brit.) I.M.M. 86, 1977, p. C77–81.

    Google Scholar 

  136. Bear, I. J. & Caney, R. J. T., “Selective reduction of a low-grade cassiterite concentrate.” Trans. (Brit.) I.M.M. 85, 1976, p. C139–146.

    Google Scholar 

  137. Bear, I. J. & Caney, R. J. T., “Extraction of tin from selectively reduced tin calcines as chloride.” Trans. (Brit.) I.M.M. 86, 1977, p. C37–40.

    Google Scholar 

  138. Grau, R. E. & Flengas, S. N., “Activities of SnO in the SnO-SiO2 system.”. J. Electrochem. Soc. 123, 1976, p. 852–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davey, T.R.A., Willis, G.M. Lead, Zinc & Tin. JOM 30, 12–19 (1978). https://doi.org/10.1007/BF03354353

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03354353

Keywords

Navigation