Advertisement

Nano-Micro Letters

, Volume 2, Issue 4, pp 247–255 | Cite as

Optimised NSAIDs-loaded Biocompatible Nanoparticles

  • V. Gaëlle RoullinEmail author
  • Maïté Callewaert
  • Michaël Molinari
  • Franck Delavoie
  • Aurélie Seconde
  • Marie-Christine Andry
Open Access
Article

Abstract

In this formulation study, biocompatible non steroidal anti-inflammatory (NSAIDs)-loaded nanoparticles were designed as models to be further integrated in a prosthesis surface functionalization. A modified spontaneous emulsion-solvent diffusion methodology was used to produce drug-loaded PLGA nanoparticles without any purification or solvent evaporation requirements. Formulation parameters, such as lactide/glycolide ratio, polymer concentration, solvent/non solvent ratio and non solvent phase, as well as the non ionic tensioactive P188 co-precipitation composition were systematically explored. The optimized formulation (mean size: 145 nm, surface charge: −13 mV) was employed to encapsulate various amounts of NSAIDs in a simple and scalable manner. The drug release was characterized in vitro by a complete release for 48 h. These results encourage upcoming preliminary steps for in vivo experiments of prosthesis surface functionalization.

Keywords

Drug delivery systems (DDS) Biocompatible Emulsion-solvent diffusion method PLGA Glycofurol Non steroidal anti-inflammatory drugs (NSAIDs) 

References

  1. 1.
    A. Kumari, S. Kumar Yadav and S. C. Yadav, Colloids Surf. B 75, 1 (2010). doi:10.1016/j.colsurfb.2009.09.001CrossRefGoogle Scholar
  2. 2.
    V. Dahl, J. C. Raede, S. Drosdal, O. Wathne and J. Brynildsrud, Acta Anaesthesiol. Scand. 39, 323 (1995). doi:10.1111/j.1399-6576.1995.tb04070.xCrossRefGoogle Scholar
  3. 3.
    M. Fransen, Control. Clin. Trials 25, 223 (2004). doi:10.1016/j.cct.2003.11.008CrossRefGoogle Scholar
  4. 4.
    C. L. Romano, D. Duci, D. Romano, M. Mazza and E. Meani, The Journal of Arthroplasty 19, 14 (2004). doi:10.1016/S0883-5403(03)00279-1CrossRefGoogle Scholar
  5. 5.
    M. Fransen, C. Anderson, J. Douglas, S. MacMahon, B. Neal, R. Norton, M. Woodward, I. D. Cameron, R. Crawford, S. K. Lo, G. Tregonning and M. Windolf, BMJ. 333, 519 (2006). doi:10.1136/bmj.38925.471146.4FCrossRefGoogle Scholar
  6. 6.
    J. P. Cella, E. A. Salvati and T. P. Sculco, The Journal of Arthroplasty 3, 229 (1988).CrossRefGoogle Scholar
  7. 7.
    C. E. Mora-Huertas, H. Fessi and A. Elaissari, Int. J. Pharm. 385, 113 (2010). doi:10.1016/j.ijpharm.2009.10.018CrossRefGoogle Scholar
  8. 8.
    T. Niwa, H. Takeuchi, T. Hino, N. Kunou and Y. Kawashima, J. Controlled Release 25, 89 (1993) doi:10.1016/0168-3659(93)90097-OCrossRefGoogle Scholar
  9. 9.
    P. J. Weller, “Handbook of Pharmaceutical Excipients 5th edition”, London: Pharmaceutical Press, 2006.Google Scholar
  10. 10.
    N. Csaba, P. Caamaño, A. Sánchez, F. Dominguez and M. J. Alonso, Biomacromolecules 6, 271 (2005). doi:10.1021/bm049577pCrossRefGoogle Scholar
  11. 11.
    O. Albayrak, O. El-Atwani and S. Altintas, Surf. Coat. Technol. 202, 2482 (2008). doi:10.1016/j.surfcoat.2007.09.031CrossRefGoogle Scholar
  12. 12.
    K. Y Win and S. S. Feng, Biomaterials 26, 2713 (2005). doi:10.1016/j.biomaterials.2004.07.050CrossRefGoogle Scholar
  13. 13.
    H. Gao, Y. N. Wang, Y. G. Fan and J. B. Ma, J. Biomed. Mater. Res. Part A 80, 111 (2007). doi:10.1002/jbm.a.30861CrossRefGoogle Scholar
  14. 14.
    T. Riley, S. Stolnik, C. R. Heald, C. D. Xiong, M. C. Garnett, L. Illum and S. S. Davis, Langmuir 17, 3168 (2001). doi:10.1021/la001226iCrossRefGoogle Scholar
  15. 15.
    G. Mittal, D. K. Sahana, V. Bhardwaj and M. N. V. Ravi Kumar, J. Controlled Release 119, 77 (2007). doi:10.1016/j.jconrel.2007.01.016CrossRefGoogle Scholar
  16. 16.
    D. Quintanar-Guerrero, E. Allemann, H. Fessi and E. Doelker, Int. J. Pharm. 188, 155 (1999). doi:10.1016/S0378-5173(99)00216-1CrossRefGoogle Scholar
  17. 17.
    T. Jung, A. Breitenbach and T. Kissell, J. Controlled Release 67, 157 (2000). doi:10.1016/S0168-659(00)002017CrossRefGoogle Scholar
  18. 18.
    J. Cheng, B. A. Teply, I. Sherifi, J. Sung, G. Luther, F. X. 3Langer and O. C. Farokhzad, Biomaterials 28, 869 (2007). doi:10.1016/j.biomaterials.2006.09.047CrossRefGoogle Scholar
  19. 19.
    D. Quintanar-Guerrero, E. Allemann and E. Doelker, Colloid Polym. Sci. 275, 640 (1997). doi:10.1007/s003960050130CrossRefGoogle Scholar
  20. 20.
    N. Anton, J. P. Benoit and P. Saulnier, J. Controlled Release 128, 185 (2008). doi:10.1016/j.jconrel.2008.02.007CrossRefGoogle Scholar
  21. 21.
    A. Aumelas, A. Serrero, A. Durand, E. Dellacherie and M. Leonard, Colloids Surf. B 59, 74 (2007). doi:10.1016/j.colsurfb.2007.04.021CrossRefGoogle Scholar
  22. 22.
    B. K. Kim, D. Kim, S. H. Cho and S. H. Yuk, J. Microencapsulation 21, 697 (2004). doi:10.1080/02652040400000520CrossRefGoogle Scholar
  23. 23.
    S. W. Choi, H. Y. Kwon, W. S. Kim and J. H. Kim, Colloids Surf. A 201, 283 (2002). doi:10.1016/S09277757(01)01042-1CrossRefGoogle Scholar
  24. 24.
    F. Gu, L. Zhang, B. A. Teply, N. Mann, A. Wang, A. F. Radovic-Moreno, R. Langer and O. C. Farokhzad, Proc. Natl. Acad. Sci. U. S. A. 105, 2586 (2008). doi:10.1073/pnas.0711714105CrossRefGoogle Scholar
  25. 25.
    C. Passirani, G. Barratt, J. P. Devissaguet and D. Labarre, Pharm. Res. 15, 1046 (1998). doi:10.1023/A:1011930127562CrossRefGoogle Scholar
  26. 26.
    N. Csaba, L. González, A. Sánchez and M. J. Alonso, J. Biomater. Sci. Polym. Ed. 1137 (2004). doi:10.1163/1568562041753098Google Scholar
  27. 27.
    B. Jiang, L. Hu, C. Gao and J. Shen, Int. J. Pharm. 304, 220 (2005). doi:10.1016/j.ijpharm.2005.08.008CrossRefGoogle Scholar
  28. 28.
    M. A. Casadei, F. Cerreto, S. Cesa, M. Giannuzzo, M. Feeney, C. Marianecci and P. Paolicelli, Int. J. Pharm. 325, 140 (2006). doi:10.1016/j.ijpharm.2006.06.012CrossRefGoogle Scholar
  29. 29.
    M. Feng, P. Li, J. Biomed. Mater. Res. Part A 80, 184 (2007). doi:10.1002/jbm.a.30882CrossRefGoogle Scholar
  30. 30.
    A. Sheikh Hasan, M. Socha, A. Lamprecht, F. E. Ghazouani, A. Sapin, M. Hoffman, P. Maincent and N. Ubrich, Int. J. Pharm. 344, 53 (2007). doi:10.1016/j.ijpharm.2007.05.066CrossRefGoogle Scholar
  31. 31.
    F. Alexis, Polym. Int. 54, 36 (2005). doi:10.1002/pi.1697CrossRefGoogle Scholar
  32. 32.
    N. Faisant, J. Siepmann and J. P. Benoit, Eur. J. Pharm. Sci. 15, 355 (2002). doi:10.1016/S0928-0987(02)00023-4CrossRefGoogle Scholar
  33. 33.
    J. Siepmann and F. Siepmann, Int. J. Pharm. 364, 328 (2008). doi:10.1016/j.ijpharm.2008.09.004CrossRefGoogle Scholar
  34. 34.
    B. S. Zolnik, P. E. Leary and D. J. Burgess, J. Controlled Release 112, 293 (2006). doi:10.1016/j.jconrel.2006.02.015CrossRefGoogle Scholar
  35. 35.
    E. Vega, F. Gamisans, M. L. Garcia, A. Chauvet, F. Lacoulonche and M. A. Egea, J. Pharm. Sci. 97, 5306 (2008). doi:10.1002/jps.21383CrossRefGoogle Scholar
  36. 36.
    Y. Javadzadeh, F. Ahadi, S. Davaran, G. Mohammadi, A. Sabzevari and K. Adibkia, Colloids Surf. B 81, 498 (2010). doi:10.1016/j.colsurfb.2010.07.047CrossRefGoogle Scholar
  37. 37.
    D. Klose, F. Siepmann, K. Elkharraz and J. Siepmann, Int. J. Pharm. 354, 95 (2008). doi:10.1016/j.ijpharm.2007.10.030CrossRefGoogle Scholar
  38. 38.
    W. J. Cho, J. H. Kim, S. H. Oh, H. H. Nam, J. M. Kim and J. H. Lee, J. Biomed. Mater. Res., Part A 91, 400 (2009) doi:10.1002/jbm.a.32264CrossRefGoogle Scholar
  39. 39.
    R. E. Eliaz and J. Kost, J. Biomed. Mater. Res. 50, 388 (2000).CrossRefGoogle Scholar
  40. 40.
    A. Aubert-Pouëssel, M. C. Venier-Julienne, P. Saulnier, M. Sergent and J. P. Benoît, Pharm. Res. 21, 2384 (2004). doi:10.1007/s11095-004-7693-3CrossRefGoogle Scholar
  41. 41.
    D. Allhenn and A. Lamprecht, Pharm. Res. (2010). doi:10.1007/s11095-010-0304-6Google Scholar

Copyright information

© Shanghai Jiao Tong University (SJTU) Press 2010

Authors and Affiliations

  • V. Gaëlle Roullin
    • 1
    Email author
  • Maïté Callewaert
    • 1
  • Michaël Molinari
    • 2
  • Franck Delavoie
    • 3
  • Aurélie Seconde
    • 1
  • Marie-Christine Andry
    • 1
  1. 1.Institut de Chimie Molé culaire de ReimsCNRS UMR 6229, UFR Pharmacie ReimsReimsFrance
  2. 2.Laboratoire de Microscopies et d’Etudes des Nanostructures, UFR des SciencesUniversité de Reims Champagne-ArdenneReims Cedex 2France
  3. 3.Laboratoire de Microscopie Electronique AnalytiqueINSERM UMRS 926Reims Cedex 2France

Personalised recommendations