High Oxygen Nanocomposite Barrier Films Based on Xylan and Nanocrystalline Cellulose

Abstract

The goal of this work is to produce nanocomposite film with low oxygen permeability by casting an aqueous solution containing xylan, sorbitol and nanocrystalline cellulose. The morphology of the resulting nanocomposite films was examined by scanning electron microscopy and atomic force microscopy which showed that control films containing xylan and sorbitol had a more open structure as compared to xylan-sorbitol films containing sulfonated nanocrystalline cellulose. The average pore diameter, bulk density, porosity and tortuosity factor measurements of control xylan films and nanocomposite xylan films were examined by mercury intrusion porosimetry techniques. Xylan films reinforced with nanocrystalline cellulose were denser and exhibited higher tortuosity factor than the control xylan films. Control xylan films had average pore diameter, bulk density, porosity and tortuosity factor of 0.1730 µm, 0.6165 g/ml, 53.0161% and 1.258, respectively as compared to xylan films reinforced with 50% nanocrystalline cellulose with average pore diameter of 0.0581 µm, bulk density of 1.1513 g/ml, porosity of 22.8906% and tortuosity factor of 2.005. Oxygen transmission rate tests demonstrated that films prepared with xylan, sorbitol and 5%, 10%, 25% and 50% sulfonated nanocrystalline cellulose exhibited a significantly reduced oxygen permeability of 1.1387, 1.0933, 0.8986 and 0.1799 cm3·µm/m2·d·kPa respectively with respect to films prepared solely from xylan and sorbitol with a oxygen permeability of 189.1665 cm3·µm/m2·d·kPa. These properties suggested these nanocomposite films have promising barrier properties.

References

  1. 1.

    L. Shen, E. Worrell and M. Patel, Biofuels, Bioprod. Biorefin. 4, 25 (2010). doi:10.1002/bbb.189

    Article  Google Scholar 

  2. 2.

    A. Samir, F. Alloin and A. Dufresne, Biomacromolecules 6, 612 (2005).

    Article  Google Scholar 

  3. 3.

    A. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, W. J. Frederick, J. P. Hallett, D. J. Leak, C. L. Liotta, J. R. Mielenz, R. Murphy, R. Templer and T. Tschaplinski, Science 311, 484 (2006). doi:10.1126/science.1114736

    Article  Google Scholar 

  4. 4.

    L. Petersson and K. Oksman, Compos. Sci. Technol. 66, 2187 (2006). doi:10.1016/j.compscitech.2005.12.010

    Article  Google Scholar 

  5. 5.

    J. M. Krochta, E. A. Baldwin and M. O. Nisperos-Carriedo, Lancaster: Technomic (1994).

  6. 6.

    J. Hartman, A. C. Albertsson, M. S. Lindblad and J. Sjöberg, J. Appl. Polym. Sci. 100, 2985 (2006). doi:10.1002/app.22958

    Article  Google Scholar 

  7. 7.

    M. Gröndahl, L. Eriksson and P. Gatenholm, Biomacromolecules 5, 1528 (2004). doi:10.1021/bm049925n

    Article  Google Scholar 

  8. 8.

    P. Dole, C. Joly, E. Espuche, I. Alric and N. Gontard, Carbohydr. Polym. 58, 335 (2004). doi:10.1016/j.carbpol.2004.08.002

    Article  Google Scholar 

  9. 9.

    B. L. Butler, P. J. Vergano, R. F. Testin, J. M. Bunn and J. L. Wiles, J. Food Sci. 61, 953 (1996). doi:10.1111/j.1365-2621.1996.tb10909.x

    Article  Google Scholar 

  10. 10.

    I. Arvanitoyannis and C. G. Biliaderis, Carbohydr. Polym. 38, 47 (1999). doi:10.1016/S0144-8617(98)00087-3

    Article  Google Scholar 

  11. 11.

    A. W. Rindlav, M. Stading, A. M. Hermansson and P. Gatenholm, Carbohydr. Polym. 36, 217 (1998). doi:10.1016/S0144-8617(98)00025-3

    Article  Google Scholar 

  12. 12.

    P. Linder, R. Bergman, A. Bodin and P. Gatenholm, Langmuir 19, 5072 (2003). doi:10.1021/la0341355

    Article  Google Scholar 

  13. 13.

    K. S. Mikkonen, S. Heikkinen, A. Soovre, M. Peura, R. Serimaa, R. A. Talja, J. Appl. Polym. Sci. 114, 457 (2009). doi:10.1002/app.30513

    Article  Google Scholar 

  14. 14.

    U. Edlund, Y. Z. Ryberg and A. C. Albertsson, Biomacromolecules 11, 2532 (2010). doi:10.1021/bm100767g

    Article  Google Scholar 

  15. 15.

    M. A. S. A, Samir, F. Alloin and A. Dufresne, Biomacromolecules 6, 612 (2005).

    Article  Google Scholar 

  16. 16.

    Kvien, J. Sugiyama, M. Votrubec and K. Oksman, J Mater. Sci. 42, 8163 (2007). doi:10.1007/s10853-007-1699-2

    Article  Google Scholar 

  17. 17.

    L. Petersson, I. Kvien and K. Oksman, Composites Sci. Technol. 67, 2535 (2007). doi:10.1016/j.compscitech.2006. 12.012

    Article  Google Scholar 

  18. 18.

    X. D. Cao, H. Dong and C. M. Li, Biomacromolecules 8, 899 (2007). doi:10.1021/bm0610368

    Article  Google Scholar 

  19. 19.

    S. Harbaugh, N. K. Loughnane, M. Davidson, L. Narayanan, S. Trott, Y. G. Chushak and M. O. Stone, Biomacromolecules 6, 1055 (2005). doi:10.1021/bm049291k

    Article  Google Scholar 

  20. 20.

    M. Lagaron, R. Catala and R. Gavaa, Mater. Sci. Technol. 20, 1 (2004). doi:10.1179/026708304225010442

    Article  Google Scholar 

  21. 21.

    M. M. De Souza Lima and R. Borsali, Macromol. Rapid. Commun. 25, 771 (2004). doi:10.1002/marc.200300268

    Article  Google Scholar 

  22. 22.

    M. Ioelovich, BioRes. 3, 1403 (2008).

    Google Scholar 

  23. 23.

    S. Mikkonen, A. P. Mathew, K. Pirkkalainen, R. Serimaa, C. Xu, S. Willför, K. Oksman and M. Tenkanen, Cellulose 17, 69 (2009). doi:10.1007/s10570-009-9380-3

    Article  Google Scholar 

  24. 24.

    S. Mikkonen, M. I. Heikkilä, H. Helén, L. Hyvönen and M. Tenkanen, Carbohydr. Polym. 79, 1107 (2010). doi:10.1016/j.carbpol.2009.10.049

    Article  Google Scholar 

  25. 25.

    P. Coughlan and G. P. Hazlewood, Hemicellulose and Hemicellulases (Eds). Portland Press Ltd, NC, U.S.A 1993.

    Google Scholar 

  26. 26.

    A. Ebringerova and T. Heinze, Macromol. Rapid Commun. 21, 542 (2000). doi:10.1002/1521-3927(20000601)21:9<542::AID-MARC542>3.0.CO;2-7

    Article  Google Scholar 

  27. 27.

    I. Gabrielli and P. Gatenholm, J. Appl. Polym. Sci. 69, 1661 (1998). doi:10.1002/(SICI)1097-4628(19980822)69:8<1661::AID-APP19>3.0.CO;2-X

    Article  Google Scholar 

  28. 28.

    A. Saxena, T. Elder, P. Shaobo and A. J. Ragauskas, Composites Part B: 40, 8 (2009).

    Article  Google Scholar 

  29. 29.

    A. Saxena and A. J. Ragauskas, Carbohydr. Polym. 78, 357 (2009). doi:10.1016/j.carbpol.2009.03.039

    Article  Google Scholar 

  30. 30.

    Y. Pu, J. Zhang, T. Elder, Y. Deng, P. Gatenholm and A. J. Ragauskas, Composites Part B: Eng. 38, 360 (2007). doi:10.1016/j.compositesb.2006.07.008

    Article  Google Scholar 

  31. 31.

    S. Katz, R. P. Beatson and A. M. Scallan, Sven. Papperstidn 87, 48 (1984).

    Google Scholar 

  32. 32.

    ASTM, Standard test method for oxygen transmission rate through plastic film and sheeting using a coulometric sensor, designation D 3985-9, in: Annual Book of ASTM Standards, American Society for Testing and Materials, 1995.

    Google Scholar 

  33. 33.

    R. T. Parry, Principles and applications of modified atmosphere packaging of foods, Blackie Academic & Professional, England, 1 (1993).

    Google Scholar 

  34. 34.

    Syverud and P. Stenius, Cellulose 16, 75 (2009). doi:10.1007/s10570-008-9244-2

    Article  Google Scholar 

  35. 35.

    A. Ebringerova and T. Heinze, Macromol. Rapid Commun. 21, 542 (2000). doi:10.1002/1521-3927(20000601)21:9<542::AID-MARC542>3.0.CO;2-7

    Article  Google Scholar 

  36. 36.

    I. Gabrielli and P. Gatenholm, J. Appl. Polym. Sci. 69, 1661 (1998). doi:10.1002/(SICI)1097-4628(19980822)69:8<1661::AID-APP19>3.0.CO;2-X

    Article  Google Scholar 

  37. 37.

    A. Saxena, T. Elder, P. Shaobo and A. J. Ragauskas, Composites Part B: 40, 8 (2009).

    Article  Google Scholar 

  38. 38.

    A. Saxena and A. J. Ragauskas, Carbohydr. Polym. 78, 357 (2009). doi:10.1016/j.carbpol.2009.03.039

    Article  Google Scholar 

  39. 39.

    Y. Pu, J. Zhang, T. Elder, Y. Deng, P. Gatenholm and A. J. Ragauskas, Composites Part B: Engineering 38, 360 (2007). doi:10.1016/j.compositesb.2006.07.008

    Article  Google Scholar 

  40. 40.

    S. Katz, R. P. Beatson and A. M. Scallan, Sven. Papperstidn 87, 48 (1984).

    Google Scholar 

  41. 41.

    ASTM, Standard test method for oxygen transmission rate through plastic film and sheeting using a coulometric sensor, designation D 3985-9, in: Annual Book of ASTM Standards, American Society for Testing and Materials, 1995.

    Google Scholar 

  42. 42.

    R. T. Parry, Principles and applications of modified atmosphere packaging of foods. Blackie Academic & Professional, England, 1 (1993).

    Google Scholar 

  43. 43.

    Syverud and P. Stenius, Cellulose 16, 75 (2009). doi:10.1007/s10570-008-9244-2

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Arthur J. Ragauskas.

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Saxena, A., Elder, T.J., Kenvin, J. et al. High Oxygen Nanocomposite Barrier Films Based on Xylan and Nanocrystalline Cellulose. Nano-Micro Lett. 2, 235–241 (2010). https://doi.org/10.1007/BF03353849

Download citation

Keywords

  • Nanocomposites
  • Xylan
  • Nanocrystalline cellulose
  • Oxygen barrier