Advertisement

Nano-Micro Letters

, Volume 2, Issue 4, pp 235–241 | Cite as

High Oxygen Nanocomposite Barrier Films Based on Xylan and Nanocrystalline Cellulose

  • Amit Saxena
  • Thomas J. Elder
  • Jeffrey Kenvin
  • Arthur J. RagauskasEmail author
Open Access
Article

Abstract

The goal of this work is to produce nanocomposite film with low oxygen permeability by casting an aqueous solution containing xylan, sorbitol and nanocrystalline cellulose. The morphology of the resulting nanocomposite films was examined by scanning electron microscopy and atomic force microscopy which showed that control films containing xylan and sorbitol had a more open structure as compared to xylan-sorbitol films containing sulfonated nanocrystalline cellulose. The average pore diameter, bulk density, porosity and tortuosity factor measurements of control xylan films and nanocomposite xylan films were examined by mercury intrusion porosimetry techniques. Xylan films reinforced with nanocrystalline cellulose were denser and exhibited higher tortuosity factor than the control xylan films. Control xylan films had average pore diameter, bulk density, porosity and tortuosity factor of 0.1730 µm, 0.6165 g/ml, 53.0161% and 1.258, respectively as compared to xylan films reinforced with 50% nanocrystalline cellulose with average pore diameter of 0.0581 µm, bulk density of 1.1513 g/ml, porosity of 22.8906% and tortuosity factor of 2.005. Oxygen transmission rate tests demonstrated that films prepared with xylan, sorbitol and 5%, 10%, 25% and 50% sulfonated nanocrystalline cellulose exhibited a significantly reduced oxygen permeability of 1.1387, 1.0933, 0.8986 and 0.1799 cm3·µm/m2·d·kPa respectively with respect to films prepared solely from xylan and sorbitol with a oxygen permeability of 189.1665 cm3·µm/m2·d·kPa. These properties suggested these nanocomposite films have promising barrier properties.

Keywords

Nanocomposites Xylan Nanocrystalline cellulose Oxygen barrier 

References

  1. 1.
    L. Shen, E. Worrell and M. Patel, Biofuels, Bioprod. Biorefin. 4, 25 (2010). doi:10.1002/bbb.189CrossRefGoogle Scholar
  2. 2.
    A. Samir, F. Alloin and A. Dufresne, Biomacromolecules 6, 612 (2005).CrossRefGoogle Scholar
  3. 3.
    A. J. Ragauskas, C. K. Williams, B. H. Davison, G. Britovsek, J. Cairney, C. A. Eckert, W. J. Frederick, J. P. Hallett, D. J. Leak, C. L. Liotta, J. R. Mielenz, R. Murphy, R. Templer and T. Tschaplinski, Science 311, 484 (2006). doi:10.1126/science.1114736CrossRefGoogle Scholar
  4. 4.
    L. Petersson and K. Oksman, Compos. Sci. Technol. 66, 2187 (2006). doi:10.1016/j.compscitech.2005.12.010CrossRefGoogle Scholar
  5. 5.
    J. M. Krochta, E. A. Baldwin and M. O. Nisperos-Carriedo, Lancaster: Technomic (1994).Google Scholar
  6. 6.
    J. Hartman, A. C. Albertsson, M. S. Lindblad and J. Sjöberg, J. Appl. Polym. Sci. 100, 2985 (2006). doi:10.1002/app.22958CrossRefGoogle Scholar
  7. 7.
    M. Gröndahl, L. Eriksson and P. Gatenholm, Biomacromolecules 5, 1528 (2004). doi:10.1021/bm049925nCrossRefGoogle Scholar
  8. 8.
    P. Dole, C. Joly, E. Espuche, I. Alric and N. Gontard, Carbohydr. Polym. 58, 335 (2004). doi:10.1016/j.carbpol.2004.08.002CrossRefGoogle Scholar
  9. 9.
    B. L. Butler, P. J. Vergano, R. F. Testin, J. M. Bunn and J. L. Wiles, J. Food Sci. 61, 953 (1996). doi:10.1111/j.1365-2621.1996.tb10909.xCrossRefGoogle Scholar
  10. 10.
    I. Arvanitoyannis and C. G. Biliaderis, Carbohydr. Polym. 38, 47 (1999). doi:10.1016/S0144-8617(98)00087-3CrossRefGoogle Scholar
  11. 11.
    A. W. Rindlav, M. Stading, A. M. Hermansson and P. Gatenholm, Carbohydr. Polym. 36, 217 (1998). doi:10.1016/S0144-8617(98)00025-3CrossRefGoogle Scholar
  12. 12.
    P. Linder, R. Bergman, A. Bodin and P. Gatenholm, Langmuir 19, 5072 (2003). doi:10.1021/la0341355CrossRefGoogle Scholar
  13. 13.
    K. S. Mikkonen, S. Heikkinen, A. Soovre, M. Peura, R. Serimaa, R. A. Talja, J. Appl. Polym. Sci. 114, 457 (2009). doi:10.1002/app.30513CrossRefGoogle Scholar
  14. 14.
    U. Edlund, Y. Z. Ryberg and A. C. Albertsson, Biomacromolecules 11, 2532 (2010). doi:10.1021/bm100767gCrossRefGoogle Scholar
  15. 15.
    M. A. S. A, Samir, F. Alloin and A. Dufresne, Biomacromolecules 6, 612 (2005).CrossRefGoogle Scholar
  16. 16.
    Kvien, J. Sugiyama, M. Votrubec and K. Oksman, J Mater. Sci. 42, 8163 (2007). doi:10.1007/s10853-007-1699-2CrossRefGoogle Scholar
  17. 17.
    L. Petersson, I. Kvien and K. Oksman, Composites Sci. Technol. 67, 2535 (2007). doi:10.1016/j.compscitech.2006. 12.012CrossRefGoogle Scholar
  18. 18.
    X. D. Cao, H. Dong and C. M. Li, Biomacromolecules 8, 899 (2007). doi:10.1021/bm0610368CrossRefGoogle Scholar
  19. 19.
    S. Harbaugh, N. K. Loughnane, M. Davidson, L. Narayanan, S. Trott, Y. G. Chushak and M. O. Stone, Biomacromolecules 6, 1055 (2005). doi:10.1021/bm049291kCrossRefGoogle Scholar
  20. 20.
    M. Lagaron, R. Catala and R. Gavaa, Mater. Sci. Technol. 20, 1 (2004). doi:10.1179/026708304225010442CrossRefGoogle Scholar
  21. 21.
    M. M. De Souza Lima and R. Borsali, Macromol. Rapid. Commun. 25, 771 (2004). doi:10.1002/marc.200300268CrossRefGoogle Scholar
  22. 22.
    M. Ioelovich, BioRes. 3, 1403 (2008).Google Scholar
  23. 23.
    S. Mikkonen, A. P. Mathew, K. Pirkkalainen, R. Serimaa, C. Xu, S. Willför, K. Oksman and M. Tenkanen, Cellulose 17, 69 (2009). doi:10.1007/s10570-009-9380-3CrossRefGoogle Scholar
  24. 24.
    S. Mikkonen, M. I. Heikkilä, H. Helén, L. Hyvönen and M. Tenkanen, Carbohydr. Polym. 79, 1107 (2010). doi:10.1016/j.carbpol.2009.10.049CrossRefGoogle Scholar
  25. 25.
    P. Coughlan and G. P. Hazlewood, Hemicellulose and Hemicellulases (Eds). Portland Press Ltd, NC, U.S.A 1993.Google Scholar
  26. 26.
    A. Ebringerova and T. Heinze, Macromol. Rapid Commun. 21, 542 (2000). doi:10.1002/1521-3927(20000601)21:9<542::AID-MARC542>3.0.CO;2-7CrossRefGoogle Scholar
  27. 27.
    I. Gabrielli and P. Gatenholm, J. Appl. Polym. Sci. 69, 1661 (1998). doi:10.1002/(SICI)1097-4628(19980822)69:8<1661::AID-APP19>3.0.CO;2-XCrossRefGoogle Scholar
  28. 28.
    A. Saxena, T. Elder, P. Shaobo and A. J. Ragauskas, Composites Part B: 40, 8 (2009).CrossRefGoogle Scholar
  29. 29.
    A. Saxena and A. J. Ragauskas, Carbohydr. Polym. 78, 357 (2009). doi:10.1016/j.carbpol.2009.03.039CrossRefGoogle Scholar
  30. 30.
    Y. Pu, J. Zhang, T. Elder, Y. Deng, P. Gatenholm and A. J. Ragauskas, Composites Part B: Eng. 38, 360 (2007). doi:10.1016/j.compositesb.2006.07.008CrossRefGoogle Scholar
  31. 31.
    S. Katz, R. P. Beatson and A. M. Scallan, Sven. Papperstidn 87, 48 (1984).Google Scholar
  32. 32.
    ASTM, Standard test method for oxygen transmission rate through plastic film and sheeting using a coulometric sensor, designation D 3985-9, in: Annual Book of ASTM Standards, American Society for Testing and Materials, 1995.Google Scholar
  33. 33.
    R. T. Parry, Principles and applications of modified atmosphere packaging of foods, Blackie Academic & Professional, England, 1 (1993).CrossRefGoogle Scholar
  34. 34.
    Syverud and P. Stenius, Cellulose 16, 75 (2009). doi:10.1007/s10570-008-9244-2CrossRefGoogle Scholar
  35. 35.
    A. Ebringerova and T. Heinze, Macromol. Rapid Commun. 21, 542 (2000). doi:10.1002/1521-3927(20000601)21:9<542::AID-MARC542>3.0.CO;2-7CrossRefGoogle Scholar
  36. 36.
    I. Gabrielli and P. Gatenholm, J. Appl. Polym. Sci. 69, 1661 (1998). doi:10.1002/(SICI)1097-4628(19980822)69:8<1661::AID-APP19>3.0.CO;2-XCrossRefGoogle Scholar
  37. 37.
    A. Saxena, T. Elder, P. Shaobo and A. J. Ragauskas, Composites Part B: 40, 8 (2009).CrossRefGoogle Scholar
  38. 38.
    A. Saxena and A. J. Ragauskas, Carbohydr. Polym. 78, 357 (2009). doi:10.1016/j.carbpol.2009.03.039CrossRefGoogle Scholar
  39. 39.
    Y. Pu, J. Zhang, T. Elder, Y. Deng, P. Gatenholm and A. J. Ragauskas, Composites Part B: Engineering 38, 360 (2007). doi:10.1016/j.compositesb.2006.07.008CrossRefGoogle Scholar
  40. 40.
    S. Katz, R. P. Beatson and A. M. Scallan, Sven. Papperstidn 87, 48 (1984).Google Scholar
  41. 41.
    ASTM, Standard test method for oxygen transmission rate through plastic film and sheeting using a coulometric sensor, designation D 3985-9, in: Annual Book of ASTM Standards, American Society for Testing and Materials, 1995.Google Scholar
  42. 42.
    R. T. Parry, Principles and applications of modified atmosphere packaging of foods. Blackie Academic & Professional, England, 1 (1993).CrossRefGoogle Scholar
  43. 43.
    Syverud and P. Stenius, Cellulose 16, 75 (2009). doi:10.1007/s10570-008-9244-2CrossRefGoogle Scholar

Copyright information

© Shanghai Jiao Tong University (SJTU) Press 2010

Authors and Affiliations

  • Amit Saxena
    • 1
  • Thomas J. Elder
    • 2
  • Jeffrey Kenvin
    • 3
  • Arthur J. Ragauskas
    • 1
    Email author
  1. 1.School of Chemistry and BiochemistryGeorgia Institute of TechnologyAtlantaUSA
  2. 2.USDA-Forest ServiceSouthern Research StationPinevilleUSA
  3. 3.Micromeritics Instrument CorporationNorcrossUSA

Personalised recommendations