Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Nano-Micro Letters
  3. Article
RhB Adsorption Performance of Magnetic Adsorbent Fe3O4/RGO Composite and Its Regeneration through A Fenton-like Reaction
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Adsorption and heterogeneous Fenton catalytic performance for magnetic Fe3O4/reduced graphene oxide aerogel

31 August 2020

Fengling Zhang, Xiangxin Xue, … He Yang

Magnetic graphene-based nanocomposites as highly efficient absorbents for Cr(VI) removal from wastewater

20 November 2020

Xiuxiu Zhang, Guiyun Yi, … Chuanxiang Zhang

In situ co-precipitation preparation of a superparamagnetic graphene oxide/Fe3O4 nanocomposite as an adsorbent for wastewater purification: synthesis, characterization, kinetics, and isotherm studies

13 April 2018

Shengyan Pu, Shengyang Xue, … Wei Chu

Magnetic graphene oxide for methylene blue removal: adsorption performance and comparison of regeneration methods

07 January 2022

Yawei Shi, Haonan Wang, … Guanghui Ding

Fe3O4 hollow nanospheres on graphene oxide as an efficient heterogeneous photo-Fenton catalyst for the advanced treatment of biotreated papermaking effluent

22 March 2021

Yecan Peng, Guirong Ye, … Jinghong Zhou

Efficient removal of methyl blue from aqueous solution by using poly(4-vinylpyridine)–graphene oxide–Fe3O4 magnetic nanocomposites

22 February 2019

Yuanshuai Li, Haijun Lu, … Xiaoli Li

Synthesis of magnetic graphene quantum dots–chitosan nanocomposite: an efficient adsorbent for removal of Pb2+ from aqueous solution

12 July 2022

A.-R. Sedaghatian, A. Marjani, … R. Mohammad-Rezaei

Evaluation of Fe3O4-MnO2@RGO magnetic nanocomposite as an effective persulfate activator and metal adsorbent in aqueous solution

20 February 2023

Mang Lu, Xue-jiao Wu, … Shu-hao Yuan

Toward enhanced catalytic activity of magnetic nanoparticles integrated into 3D reduced graphene oxide for heterogeneous Fenton organic dye degradation

15 September 2021

Fatemeh Sadegh, Nikolaos Politakos, … Radmila Tomovska

Download PDF
  • Article
  • Open Access
  • Published: 20 March 2014

RhB Adsorption Performance of Magnetic Adsorbent Fe3O4/RGO Composite and Its Regeneration through A Fenton-like Reaction

  • Yalin Qin1,
  • Mingce Long1,
  • Beihui Tan1 &
  • …
  • Baoxue Zhou1 

Nano-Micro Letters volume 6, pages 125–135 (2014)Cite this article

  • 2092 Accesses

  • 96 Citations

  • Metrics details

Abstract

Adsorption is one of the most effective technologies in the treatment of colored matter containing wastewater. Graphene related composites display potential to be an effective adsorbent. However, the adsorption mechanism and their regeneration approach are still demanding more efforts. An effective magnetically separable absorbent, Fe3O4 and reduced graphene oxide (RGO) composite has been prepared by an in situ coprecipitation and reduction method. According to the characterizations of TEM, XRD, XPS, Raman spectra and BET analyses, Fe3O4 nanoparticles in sizes of 10–20 nm are well dispersed over the RGO nanosheets, resulting in a highest specific area of 296.2 m2/g. The rhodamine B adsorption mechanism on the composites was investigated by the adsorption kinetics and isotherms. The isotherms are fitting better by Langmuir model, and the adsorption kinetic rates depend much on the chemical components of RGO. Compared to active carbon, the composite shows 3.7 times higher adsorption capacity and thirty times faster adsorption rates. Furthermore, with Fe3O4 nanoparticles as the in situ catalysts, the adsorption performance of composites can be restored by carrying out a Fenton-like reaction, which could be a promising regeneration way for the adsorbents in the organic pollutant removal of wastewater.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. R. Sanghi and P. Verma, “Decolorisation of aqueous dye solutions by low-cost adsorbents: a review”, Color. Technol. 129(2), 85–108 (2013). http://dx.doi.org/10.1111/cote.12019

    Article  Google Scholar 

  2. A. Dqbrowski, “Adsorption — from theory to practice”, Adv. Colloid Interface Sci. 93(1–3), 135–224 (2001). http://dx.doi.org/10.1016/S0001-8686(00)00082-8

    Article  Google Scholar 

  3. J. C. Lazo-Cannata, A. Nieto-Márquez, A. Jacoby, A. L. Paredes-Doig, A. Romero, M. R. Sun-Kou and J. L. Valverde, “Adsorption of phenol and nitrophenols by carbon nanospheres: Effect of pH and ionic strength”, Sep. Purif. Technol. 80(2), 217–224 (2011). http://dx.doi.org/10.1016/j.seppur.2011.04.029

    Article  Google Scholar 

  4. R. Liu, W. Gong, H. Lan, T. Yang, H. Liu and J. Qu, “Simultaneous removal of arsenate and fluoride by iron and aluminum binary oxide: Competitive adsorption effects”, Sep. Purif. Technol. 92, 100–105 (2012). http://dx.doi.org/10.1016/j.seppur.2012.03.020

    Article  Google Scholar 

  5. X. Hu, B. Liu, Y. Deng, H. Chen, S. Luo, C. Sun, P. Yang and S. Yang, “Adsorption and heterogeneous Fenton degradation of 17α-methyltestosterone on nano Fe3O4/MWCNTs in aqueous solution”, Appl. Catal. B: Environ. 107(3-4), 274–283 (2011). http://dx.doi.org/10.1016/j.apcatb.2011.07.025

    Article  Google Scholar 

  6. S. Tang, N. Lu, J. Li and Y. Wu, “Design and application of an up-scaled dielectric barrier discharge plasma reactor for regeneration of phenolsaturated granular activated carbon”, Sep. Purif. Technol. 95, 73–79 (2012). http://dx.doi.org/10.1016/j.seppur.2012.05.002

    Article  Google Scholar 

  7. V. K. K. Upadhyayula, S. Deng, M. C. Mitchell and G. B. Smith, “Application of carbon nanotube technology for removal of contaminants in drinking water: a review”, Sci. Total Environ. 408(1), 1–13 (2009). http://dx.doi.org/10.1016/j.scitotenv.2009.09.027

    Article  Google Scholar 

  8. Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts and R. S. Ruoff, “Graphene and graphene oxide: synthesis, properties, and applications”, Adv. Mater. 22(35), 3906–3924 (2010). http://dx.doi.org/10.1002/adma.201001068

    Article  Google Scholar 

  9. J. Kim, L. J. Cote and J. Huang, “Two dimensional soft material: new faces of graphene oxide”, Acc. Chem. Res. 45(8), 1356–1364 (2012). http://dx.doi.org/10.1021/ar300047s

    Article  Google Scholar 

  10. S. Wang, H. Sun, H. M. Ang and M. O. Tadé, “Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials”, Chem. Eng. J. 226, 336–347 (2013). http://dx.doi.org/10.1016/j.cej.2013.04.070

    Article  Google Scholar 

  11. K. C. Kemp, H. Seema, M. Saleh, N. H. Le, K. Mahesh, V. Chandra and K. S. Kim, “Environmental applications using graphene composites: water remediation and gas adsorption”, Nanoscale 5(8), 3149–71 (2013). http://dx.doi.org/10.1039/c3nr33708a

    Article  Google Scholar 

  12. Y. Zhi, G. Rungang, H. Nantao, C. Jing, C. Yingwu, Z. Liying, W. Hao, K. Eric Siu-Wai and Z. Yafei, “The prospective 2D graphene nanosheets: preparation, functionalization and applications”, Nano-Micro Lett. 4(1), 1–9 (2012). http://dx.doi.org/10.3786/nml.v4i1.p1-9

    Article  Google Scholar 

  13. J. Kim, L. J. Cote, F. Kim, W. Yuan, K. R. Shull and J. Huang, “Graphene oxide sheets at interfaces”, J. Am. Chem. Soc. 132(23), 8180–8186 (2010). http://dx.doi.org/10.1021/ja102777p

    Article  Google Scholar 

  14. Z. Liu, J. T. Robinson, X. Sun and H. Dai, “PEGylated nanographene oxide for delivery of water-Insoluble cancer drugs”, J. Am. Chem. Soc. 130(33), 10876–10877 (2008). http://dx.doi.org/10.1021/ja803688x

    Article  Google Scholar 

  15. G. Zhao, T. Wen, C. Chen and X. Wang, “Synthesis of graphene-based nanomaterials and their application in energy-related and environmental-related areas”, RSC Adv. 2(25), 9286–9303 (2012). http://dx.doi.org/10.1039/c2ra20990j

    Article  Google Scholar 

  16. L. Wan, M. Long, D. Zhou, L. Zhang and W. Cai, “Preparation and characterization of freestanding hierarchical porous TiO2 monolith modified with graphene oxide”, Nano-Micro Lett. 4(2), 90–97 (2012). http://dx.doi.org/dx.doi.org/10.3786/nml.v4i2.p90-97

    Article  Google Scholar 

  17. C. T. Yavuz, J. T. Mayo, W. W. Yu, A. Prakash, J. C. Falkner, S. Yean, L. Cong, H. J. Shipley, A. Kan, M. Tomson, D. Natelson and V. L. Colvin, “Low-field magnetic separation of monodisperse Fe3O4 nanocrystals”, Science 314(5801), 964–967 (2006). http://dx.doi.org/10.1126/science.1131475

    Article  Google Scholar 

  18. M. Tayyebeh, A. Abbas, Z. Mohammad Ali, A. Mazaher and K. Nadia, “Application of modified silica coated magnetite nanoparticles for removal of iodine from water samples”, Nano-Micro Lett. 4(1), 57–63 (2012). http://dx.doi.org/10.3786/nml.v4i1.p57-63

    Article  Google Scholar 

  19. H. Sun, L. Cao and L. Lu, “Magnetite/reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants”, Nano Res. 4(6), 550–562 (2011). http://dx.doi.org/10.1007/s12274-011-0111-3

    Article  Google Scholar 

  20. Y. Huang and A. A. Keller, “Magnetic nanoparticle adsorbents for emerging organic contaminants”, ACS Sustainable Chem. Eng. 1(1), 731–736 (2013). http://dx.doi.org/10.1021/sc400047q

    Google Scholar 

  21. L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett and X. Yan, “Intrinsic peroxidase-like activity of ferromagnetic nanoparticles”, Nat. Nanotechnol. 2(9), 577–83 (2007). http://dx.doi.org/10.1038/nnano.2007.260

    Article  Google Scholar 

  22. J. Zhang, J. Zhuang, L. Gao, Y. Zhang, N. Gu, J. Feng, D. Yang, J. Zhu and X. Yan, “Decomposing phenol by the hidden talent of ferromagnetic nanoparticles”, Chemosphere 73(9), 1524–1528 (2008). http://dx.doi.org/10.1016/j.chemosphere.2008.05.050

    Article  Google Scholar 

  23. V. Chandra, J. Park, Y. Chun, J. W. Lee, I. C. Hwang and K. S. Kim, “Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal”, ACS Nano 4(7), 3979–3986. (2010). http://dx.doi.org/10.1021/nn1008897

    Article  Google Scholar 

  24. Z. Geng, Y. Lin, X. Yu, Q. Shen, L. Ma, Z. Li, N. Pan and X. Wang, “Highly efficient dye adsorption and removal: a functional hybrid of reduced graphene oxide-Fe3O4 nanoparticles as an easily regenerative adsorbent”, J. Mater. Chem. 22 (8), 3527–3535 (2012). http://dx.doi.org/10.1039/c2jm15544c

    Article  Google Scholar 

  25. F. He, J. Fan, D. Ma, L. Zhang, C. Leung and H. L. Chan, “The attachment of Fe3O4nanoparticles to graphene oxide by covalent bonding”, Carbon 48(11), 3139–3144 (2010). http://dx.doi.org/10.1016/j.carbon.2010.04.052

    Article  Google Scholar 

  26. M. Liu, C. Chen, J. Hu, X. Wu and X. Wang, “Synthesis of magnetite/graphene oxide composite and application for cobalt(II) removal”, J. Phys. Chem. C. 115(51), 25234–25240 (2011). http://dx.doi.org/10.1021/jp208575m

    Article  Google Scholar 

  27. G. Xie, P. Xi, H. Liu, F. Chen, L. Huang, Y. Shi, F. Hou, Z. Zeng, C. Shao and J. Wang, “A facile chemical method to produce superparamagnetic graphene oxide-Fe3O4 hybrid composite and its application in the removal of dyes from aqueous solution”, J. Mater. Chem. 22(3), 1033–1039 (2012). http://dx.doi.org/10.1039/c1jm13433g

    Article  Google Scholar 

  28. X. Zhou, Y. Zhang, C. Wang, X. Wu, Y. Yang, B. Zheng, H. Wu, S. Guo and J. Zhang, “Photo-Fenton reaction of graphene oxide: A new strategy to prepare graphene quantum dots for DNA cleavage”, ACS Nano 6(8), 6592–6599 (2012). http://dx.doi.org/10.1021/nn301629v

    Article  Google Scholar 

  29. S. Q. Liu, B. Xiao, L. R. Feng, S. S. Zhou, Z. G. Chen, C. B. Liu, F. Chen, Z. Y. Wu, N. Xu, W. C. Oh and Z. D. Meng, “Graphene oxide enhances the Fentonlike photocatalytic activity of nickel ferrite for degradation of dyes under visible light irradiation”, Carbon. 64, 197–206 (2013). http://dx.doi.org/10.1016/j.carbon.2013.07.052

    Article  Google Scholar 

  30. Y. C. Lee, S. J. Chang, M. H. Choi, T. J. Jeon, T. Ryu and Y. S. Huh, “Self-assembled graphene oxide with organo-building blocks of Fe-aminoclay for heterogeneous Fenton-like reaction at near-neutral pH: a batch experiment”, Appl. Catal. B-Environ. 142, 494–503 (2013). http://dx.doi.org/10.1016/j.apcatb.2013.05.066

    Article  Google Scholar 

  31. J. J. An, L. H. Zhu, N. Wang, Z. Song, Z. Y. Yang, D. Y. Du and H. Q. Tang, “Photo-Fenton like degradation of tetrabromobisphenol A with graphene-BiFeO3 composite as a catalyst”, Chem. Eng. J. 219, 225–237 (2013). http://dx.doi.org/10.1016/j.cej.2013.01.013

    Article  Google Scholar 

  32. W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide”, J. Am. Chem. Soc. 80(6), 1339–1339 (1958). http://dx.doi.org/10.1021/ja01539a017

    Article  Google Scholar 

  33. C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu and Y. Feng, “Synthesis of visible light responsive graphene oxide/TiO2 composites with p/n heterojunction”, ACS Nano 4(11), 6425–6432 (2010). http://dx.doi.org/10.1021/nn102130m

    Article  Google Scholar 

  34. G. Wang, X. Shen, B. Wang, J. Yao and J. Park, “Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets.”, Carbon 47(5), 1359–1364 (2009). http://dx.doi.org/10.1016/j.carbon.2009.01.027

    Article  Google Scholar 

  35. Z. J. Fan, W. Kai, J. Yan, T. Wei, L. J. Zhi, J. Feng, Y. Ren, L. P. Song and F. Wei, “Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide”, ACS Nano 5(1), 191–198 (2011). http://dx.doi.org/10.1021/nn102339t

    Article  Google Scholar 

  36. P. Wang, J. Wang, T. Ming, X. Wang, H. Yu, J. Yu, Y. Wang and M. Lei, “Dye-sensitization-induced visible-light reduction of graphene oxide for the enhanced TiO2 photocatalytic performance”, ACS Appl. Mater. Interfaces 5(8), 2924–2929 (2013). http://dx.doi.org/10.1021/am4008566

    Article  Google Scholar 

  37. Y. Liu, W. Jiang, Y. Wang, X. J. Zhang, D. Song and F. S. Li, “Synthesis of Fe3O4/CNTs magnetic nanocomposites at the liquid-liquid interface using oleate as surfactant and reactant”, J. Magn. Magn. Mater. 321(5), 408–412 (2009). http://dx.doi.org/10.1016/j.jmmm.2008.09.039

    Article  Google Scholar 

  38. X. Gou, G. Wang, J. Park, H. Liu and J. Yang, “Monodisperse hematite porous nanospheres: synthesis, characterization, and applications for gas sensors”, Nanotechnol. 19(12), 125606 (2008). http://dx.doi.org/10.1088/0957-4484/19/12/125606

    Article  Google Scholar 

  39. O. N. Shebanova and P. Lazor, “Raman study of magnetite (Fe3O4): laser-induced thermal effects and oxidation”, J. Raman Spectrosc. 34(11), 845–852 (2003). http://dx.doi.org/10.1002/jrs.1056

    Article  Google Scholar 

  40. M. Long, Y. Qin, C. Chen, X. Guo, B. Tan and W. Cai, “Origin of visible light photoactivity of RGO/TiO2 by in situ hydrothermal growth of under-grown TiO2 with graphene oxide”, J. Phys. Chem. C. 117(32), 16734–16741 (2013). http://dx.doi.org/10.1021/jp4058109

    Article  Google Scholar 

  41. Y. He, L. Huang, J.-S. Cai, X.-M. Zheng and S.-G. Sun, “Structure and electrochemical performance of nanostructured Fe3O4/carbon nanotube composites as anodes for lithium ion batteries”, Electrochim. Acta 55(3), 1140–1144 (2010). http://dx.doi.org/10.1016/j.electacta.2009.10.014

    Article  Google Scholar 

  42. Y. Xue, H. Chen, D. Yu, S. Wang, M. Yardeni, Q. Dai, M. Guo, Y. Liu, F. Lu, J. Qu and L. Dai, “Oxidizing metal ions with graphene oxide: the in situ formation of magnetic nanoparticles on self-reduced graphene sheets for multifunctional applications”, Chem. Commun. 47(42), 11689–11691 (2011). http://dx.doi.org/10.1039/c1cc14789g

    Article  Google Scholar 

  43. K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol and T. Siemieniewska, “Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity”, Pure Appl. Chem. 57(11), 2201–2218 (1982). http://dx.doi.org/10.1351/pac198254112201

    Google Scholar 

  44. X. Yu, H. Cai, W. Zhang, X. Li, N. Pan, Y. Luo, X. Wang and J. G. Hou, “ Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets”, ACS Nano 5(2), 952–958 (2011). http://dx.doi.org/10.1021/nn102291j

    Article  Google Scholar 

  45. J. N. Tiwari, K. Mahesh, N. H. Le, K. C. Kemp, R. Timilsina, R. N. Tiwari and K. S. Kim, “Reduced graphene oxide-based hydrogels for the efficient capture of dye pollutants from aqueous solutions”, Carbon 56, 173–182 (2013). http://dx.doi.org/10.1016/j.carbon.2013.01.001

    Article  Google Scholar 

  46. R. Zhang, M. Hummelgård, G. Lv and H. Olin, “Real time monitoring of the drug release of rhodamine B on graphene oxide”, Carbon 49(4), 1126–1132 (2011). http://dx.doi.org/10.1016/j.carbon.2010.11.026

    Article  Google Scholar 

  47. I. Moreno-Villoslada, M. Jofré, V. Miranda, R. González, T. Sotelo, S. Hess and B. L. Rivas, “pH dependence of the interaction between rhodamine B and the water-soluble poly(sodium 4-styrenesulfonate)”, J. Phys. Chem. B 110(24), 11809–11812 (2006). http://dx.doi.org/10.1021/jp061457j

    Article  Google Scholar 

  48. A. J. Ahamed, V. Balakrishnan and S. Arivoli, “Kinetic and equilibrium studies of Rhodamine B adsorption by low cost activated carbon”, Arch. Appl. Sci. Res. 3(3), 154–166 (2011).

    Google Scholar 

  49. G. K. Ramesha, A. V. Kumara, H. B. Muralidhara and S. Sampath, “Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes”, J. Colloid Interf. Sci. 361(1), 270–7 (2011). http://dx.doi.org/10.1016/j.jcis.2011.05.050

    Article  Google Scholar 

  50. M. Xia, M. Long, Y. Yang, C. Chen, W. Cai and B. Zhou, “A highly active bimetallic oxides catalyst supported on Al-containing MCM-41 for Fenton oxidation of phenol solution”, Appl. Catal. B: Environ. 110, 118–125 (2011). http://dx.doi.org/10.1016/j.apcatb.2011.08.033

    Article  Google Scholar 

  51. A. Chouket, H. Elhouichet, M. Oueslati, H. Koyama, B. Gelloz and N. Koshida, “Energy transfer in poroussilicon/laser-dye composite evidenced by polarization memory of photoluminescence”, Appl. Phys. Lett. 91(21), 211902 (2007). http://dx.doi.org/10.1063/1.2814051s

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China

    Yalin Qin, Mingce Long, Beihui Tan & Baoxue Zhou

Authors
  1. Yalin Qin
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Mingce Long
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Beihui Tan
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Baoxue Zhou
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Mingce Long.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Qin, Y., Long, M., Tan, B. et al. RhB Adsorption Performance of Magnetic Adsorbent Fe3O4/RGO Composite and Its Regeneration through A Fenton-like Reaction. Nano-Micro Lett. 6, 125–135 (2014). https://doi.org/10.1007/BF03353776

Download citation

  • Received: 15 October 2013

  • Accepted: 21 December 2013

  • Published: 20 March 2014

  • Issue Date: April 2014

  • DOI: https://doi.org/10.1007/BF03353776

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Magnetic adsorbent
  • Fe3O4 nanoparticles
  • Reduced grapheme oxide
  • Fenton-likereaction
  • Regeneration
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.