Skip to main content

Synthesis, Properties and Potential Applications of Porous Graphene: A Review

Abstract

Since the discovery of graphene, many efforts have been done to modify the graphene structure for integrating this novel material to nanoelectronics, fuel cells, energy storage devices and in many other applications. This leads to the production of different types of graphene-based materials, which possess properties different from those of pure graphene. Porous graphene is an example of this type of materials. It can be considered as a graphene sheet with some holes/pores within the atomic plane. Due to its spongy structure, porous graphene can have potential applications as membranes for molecular sieving, energy storage components and in nanoelectronics. In this review, we present the recent progress in the synthesis of porous graphene. The properties and the potential applications of this new material are also discussed.

References

  1. [1]

    A. K. Geim and K. S. Novoselov, “The rise of graphene”, Nat. Mater. 6, 183–191 (2007). http://dx.doi.org/10.1038/nmat1849

    Google Scholar 

  2. [2]

    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov “Electric field effect in atomically thin carbon films”, Science 306, 666–669 (2004). http://dx.doi.org/10.1126/science.1102896

    Google Scholar 

  3. [3]

    T. Ohta, A. Bostwick, T. Seyller, K. Horn and E. Rotenberg, “Controlling the electronic structure of bilayer graphene”, Science 313, 951–954 (2006). http://dx.doi.org/10.1126/science.1130681

    Google Scholar 

  4. [4]

    L. Kane and E. J. Mele, “Quantum spin hall effect in graphene”, Phys. Rev. Lett. 95(22), 226801–4 (2005). http://dx.doi.org/10.1103/PhysRevLett.95.226801

    Google Scholar 

  5. [5]

    M. A. H. Vozmediano, M. P. Lopez-Sancho, T. Stauber and F. Giunea, “Local defects and ferromagnetism in graphene layers”, Phys. Rev. B 72(15), 155121–5 (2005). http://dx.doi.org/10.1103/PhysRevB.72.155121

    Google Scholar 

  6. [6]

    A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition”, Nano Lett. 9(1), 30–35 (2009). http://dx.doi.org/10.1021/nl801827v

    Google Scholar 

  7. [7]

    X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils”, Science 324(5932), 1312–1314 (2009). http://dx.doi.org/10.1126/science.1171245

    Google Scholar 

  8. [8]

    K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi and B. Hee Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes”, Nature 457, 706–710 (2009). http://dx.doi.org/10.1038/nature07719

    Google Scholar 

  9. [9]

    Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun’Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari and J. N. Coleman, “High-yield production of graphene by liquid-phase exfoliation of graphite”, Nat. Nanotech. 3, 563–568 (2008). http://dx.doi.org/10.1038/nnano.2008.215

    Google Scholar 

  10. [10]

    H. C. Schniepp, J. L. Li, M. J. McAllister, H. Sai, M. Herrera-Alonso, D. H. Adamson, R. K. Prud’homme, R. Car, D. A. Saville and I. A. J. Aksay, “Functionalized single graphene sheets derived from splitting graphite oxide”, J. Phys. Chem. B 110(17), 8535–8539 (2006). http://dx.doi.org/10.1021/jp060936f

    Google Scholar 

  11. [11]

    S. Niyogi, E. Bekyarova, M. E. Itikis, J. L. McWilliams, M. A. Hammon and R. C. Haddon, “Solution properties of graphite and graphene”, J. Am. Chem. Soc. 128(24), 7720–7721 (2006). http://dx.doi.org/10.1021/ja060680r

    Google Scholar 

  12. [12]

    M. Zhou, Y. M. Zhai and S. J. Dong, “Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide”, Anal. Chem. 81(14), 5603–5613 (2009). http://dx.doi.org/10.1021/ac900136z

    Google Scholar 

  13. [13]

    H. Bi, S. Sun, F. Huang, X. Xieb and M. Jiang, “Direct growth of few-layer graphene films on SiO2 substrates and their photovoltaic applications”, J. Mater. Chem. 22, 411–416 (2012). http://dx.doi.org/10.1039/c1jm14778a

    Google Scholar 

  14. [14]

    W. Choi and J-W. Lee, “Graphene: Synthesis and Applications”, CRC Press, Taylor & Francis group, 2012. ISBN: 978-1-4398-6187-5.

    Google Scholar 

  15. [15]

    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, “Two-dimensional gas of massless dirac fermions in graphene”, Nature 438, 197–200 (2005). http://dx.doi.org/10.1038/nature04233

    Google Scholar 

  16. [16]

    X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo and H. Dai, “N-doping of graphene through electrothermal reactions with ammonia”, Science 324(5928), 768–771 (2009). http://dx.doi.org/10.1126/science.1170335

    Google Scholar 

  17. [17]

    Y. Shao, S. Zhang, M. H. Engelhard, G. Li, G. Shao, Y. Wang, J. Liu, I. A. Aksay and Y. Lin, “Nitrogen-doped graphene and its electrochemical applications”, J. Mater. Chem. 20, 7491–7496 (2010). http://dx.doi.org/10.1039/c0jm00782j

    Google Scholar 

  18. [18]

    X. Wang, L. Zhi, and K. Müllen, “Transparent, conductive graphene electrodes for dye-sensitized solar cells”, Nano Lett. 8(1), 323–327 (2008). http://dx.doi.org/10.1021/nl072838r

    Google Scholar 

  19. [19]

    D. Kim, D. Lee, Y. Lee and D. Y. Jeon, “Work-function engineering of graphene anode by bis (trifluoromethanesulfonyl) amide doping for efficient polymer light-emitting diodes”, Adv. Funct. Mater. 23(40), 5049–5055 (2013). http://dx.doi.org/10.1002/adfm201301386

    Google Scholar 

  20. [20]

    J. Ha, S. Park, D. Kim, J. Ryu, C. Lee, B. H. Hong and Y. Hong, “High-performance polymer light emitting diodes with interface-engineered graphene anodes”, Organic Electronics 14(9), 2324–2330 (2013). http://dx.doi.org/10.1016/j.orgel.2013.05.033

    Google Scholar 

  21. [21]

    X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. M. Wu, S. S. Gambhir and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics”, Science 307(5709), 538–544 (2005). http://dx.doi.org/10.1126/science.1104274

    Google Scholar 

  22. [22]

    B. D. Zdravkov, J. J. Cermak, M. Sefara and J. Jank, “Pore classification in the characterization of porous materials: a perspective”, Cent. Eur. J. Chem. 5(2), 385–395 (2007). http://dx.doi.org/10.2478/s11532-007-0017-9

    Google Scholar 

  23. [23]

    C. Liang, Z. Li and S. Dai, “Mesoporous carbon materials: synthesis and modification”, Angew Chem. Int. Ed. 47, 3696–3717 (2008). http://dx.doi.org/10.1002/anie.200702046

    Google Scholar 

  24. [24]

    T. Kyotani,“Control of pore structure in carbon”, Carbon 38(2), 269–286 (2000). http://dx.doi.org/10.1016/S0008-6223(99)00142-6

    Google Scholar 

  25. [25]

    C. R. Bansal, J. B. Donnet and F. Stoeckl, “Active carbon”, Marcel Dekker, New York, pp.482 (1988).

    Google Scholar 

  26. [26]

    J. S. Bunch, S. S Verbridge, J. S. Alden, A. M. van der Zande, J. M. Parpia, H. G. Craighead and P. L. McEuen, “Impermeable atomic membranes from graphene sheets”, Nano Lett. 8(8), 2458–2462, (2008). http://dx.doi.org/10.1021/nl801457b

    Google Scholar 

  27. [27]

    S. Patchkovskii, J. S. Tse, S. N. Yurchenko, L. Zhechkov, T. Heine and G. Seifert, “Graphene nanostructures as tunable storage media for molecular hydrogen”, Proc. Natl. Acad. Sci. 102, 10439–10444 (2005). http://dx.doi.org/10.1073/pnas.0501030102

    Google Scholar 

  28. [28]

    S. P. Koenig, L. Wang, J. Pellegrino and J. S. Bunch, “Selective molecular sieving through porous graphene”, Nat. Nanotech. 7, 728–732, (2012). http://dx.doi.org/10.1038/nnano.2012.162

    Google Scholar 

  29. [29]

    D. Jiang, V. R. Cooper and S. Dai, “Porous graphene as the ultimate membrane for gas separation”, Nano Lett. 9(12), 4019–4024 (2009). http://dx.doi.org/10.1021/nl9021946

    Google Scholar 

  30. [30]

    J. Zhu, D. Yang, X. Rui, D. Sim, H. Yu, H. E. Hoster, P. M. Ajayan and Q. Yan, “Facile preparation of ordered porous graphene-metal oxide@C binder-free electrodes with high Li storage performance”, Small 9(20), 3390–3397 (2013). http://dx.doi.org/10.1002/smll.201300755

    Google Scholar 

  31. [31]

    Y. Yan, Y. X. Yin, S. Xin, Y. G. Guo and L. J. Wan, “Ionothermal synthesis of sulfur-doped porous carbons hybridized with graphene as superior anode materials for lithium-ion batteries”, Chem. Commun. 48, 10663–10665 (2012). http://dx.doi.org/10.1039/c2cc36234a

    Google Scholar 

  32. [32]

    A. Du, Z. Zhu and S. C. Smith, “Multifunctional porous graphene for nanoelectronics and hydrogen storage: new properties revealed by first principle calculations”, J. Am. Chem. Soc. 132(9), 2876–2877 (2010). http://dx.doi.org/10.1021/ja100156d

    Google Scholar 

  33. [33]

    J. Bai, X. Zhong, S. Jiang, Y. Huang and X. Duan, “Graphene nanomesh”, Nat. Nanotech. 5, 190–194 (2010). http://dx.doi.org/10.1038/nnano.2010.8

    Google Scholar 

  34. [34]

    M. Bieri, M. Treier, J. Cai, K. Ait-Mansour, P. Ruffieux, O. Groning, P. Groning, M. Kastler, R. Rieger, X. Feng, K. Mullen and R. Fasel, “Porous graphenes: two-dimensional polymer synthesis with atomic precision”, Chem. Commun. 45, 6919–6921 (2009). http://dx.doi.org/10.1039/b915190g

    Google Scholar 

  35. [35]

    Y. Li, Z. Zhou, P. Shena and Z. Chen, “Two-dimensional polyphenylene: experimentally available porous graphene as a hydrogen purification membrane”, Chem. Commun. 46, 3672–3674 (2010). http://dx.doi.org/10.1039/b926313f

    Google Scholar 

  36. [36]

    W. Frank, D. M. Tanenbaum, A. M. Van der Zande and P. L. McEuen, “Mechanical properties of suspended graphene sheets”, J. Vac. Sci. Technol. B 25, 2558–2561 (2007). http://dx.doi.org/10.1116/1.2789446

    Google Scholar 

  37. [37]

    C. Lee, X. Wei, J.W. Kysar and J. Hone, “Measurement of the elastic properties and intrinsic strength of monolayer graphene”, Science 321, 385–388 (2008). http://dx.doi.org/10.1126/science.1157996

    Google Scholar 

  38. [38]

    A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C. N. Lau, “Superior thermal conductivity of single-layer graphene”, Nano Lett. 8(3), 902–907 (2008). http://dx.doi.org/10.1021/nl0731872

    Google Scholar 

  39. [39]

    C. Faugeras, B. Faugeras, M. Orlita, M. Potemski, R. R. Nair and A. K. Geim, “Thermal conductivity of graphene in corbino membrane geometry”, ACS Nano 4(4), 1889–1892 (2010). http://dx.doi.org/10.1021/nn9016229

    Google Scholar 

  40. [40]

    W. Cai, A. L. Moore, Y. Zhu, X. Li, S. Chen, L. Shi and R. S. Ruoff, “Thermal transport in suspended and supported monolayer graphene grown by chemical”, Nano Lett. 10(5), 1645–1651 (2010). http://dx.doi.org/10.1021/nl9041966

    Google Scholar 

  41. [41]

    H. W. Ha, A. Choudhury, T. Kamal, D.-H. Kim and S.-Y. Park, “Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites”, ACS Appl. Mater. Interfaces 4(9), 4623–4630, (2012). http://dx.doi.org/10.1021/am300999g

    Google Scholar 

  42. [42]

    M. Mecklenburg, A. Schuchardt, Y. K. Mishra, S. Kaps, R. Adelung, A. Lotnyk, L. Kienle and K. Schulte, “Aerographite: ultra lightweight, flexible nanowall, carbon microtube material with outstanding mechanical performance”, Adv. Mater. 24(26), 3486–3490 (2012). http://dx.doi.org/10.1002/adma.201290158

    Google Scholar 

  43. [43]

    S. Murali, J. R. Potts, S. Stoller, J. Park, M. D. Stoller, L. L. Zhang, Y. Zhu and R. S. Ruoff, “Preparation of activated graphene and effect of activation parameters on electrochemical capacitance”, Carbon 50, 3482–3485 (2012). http://dx.doi.org/10.1016/j.carbon.2012.03.014

    Google Scholar 

  44. [44]

    L. Zhang, F. Zhang, X. Yang, G. Long, Y. Wu, T. Zhang, K. Leng, Y. Huang, Y. Ma, A. Yu and Y. Chen, “Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors”, Scientific Reports 3, 1408–1417 (2013). http://dx.doi.org/10.1038/srep01408

    Google Scholar 

  45. [45]

    H. Du, J. Li, J. Zhang, G. Su, X. Li and Y. Zhao, “Separation of hydrogen and nitrogen gases with porous graphene membrane”, J. Phys. Chem. C 115(47), 23261–23266 (2011). http://dx.doi.org/10.1021/jp206258u

    Google Scholar 

  46. [46]

    J. Schrier, “Helium separation using porous graphene membranes”, J. Phys. Chem. Lett. 1(15), 2284–2287 (2010). http://dx.doi.org/10.1021/jz100748x

    Google Scholar 

  47. [47]

    W. Hauser and P. Schwerdtfeger, “Nanoporous graphene membranes for efficient 3He/4He separation”, J. Phys. Chem. Lett. 3(2), 209–213 (2012). http://dx.doi.org/10.1021/jz201504k

    Google Scholar 

  48. [48]

    S. Blankenburg, M. Bieri, R. Fasel, K. Mullen, C. A. Pignedoli and D. Passerone, “Porous graphene as an atmospheric nanofilter”, Small 6(20), 2266–2271 (2010). http://dx.doi.org/10.1002/smll.201090068

    Google Scholar 

  49. [49]

    J. Xiao, D. Mei, X. Li, W. Xu, D. Wang, G. L. Graff, W. D. Bennett, Z. Nie, L. V. Saraf, I. A. Aksay, J. Liu and J.-G. Zhang, “Hierarchically porous graphene as a Lithium-air battery electrode”, Nano Lett. 11(11), 5071–5078 (2011). http://dx.doi.org/10.1021/nl203332e

    Google Scholar 

  50. [50]

    J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi and F. Wei, “Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density”, Adv. Funct. Mater. 22(12), 2632–2641 (2012). http://dx.doi.org/10.1002/adfm.201102839

    Google Scholar 

  51. [51]

    J. Zhao, W. Ren and H.-M. Cheng, “Graphene sponge for efficient and repeatable adsorption and desorption of water contaminations”, J. Mater. Chem. 22, 20197–20202 (2012). http://dx.doi.org/10.1039/c2jm34128j

    Google Scholar 

  52. [52]

    H. Bi, X. Xie, K. Yin, Y. Zhou, S. Wan, L. He, F. Xu, F. Banhart, L. Sun and R. S. Ruoff, “Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents”, Adv. Funct. Mater. 22(21), 4421–4425 (2012). http://dx.doi.org/10.1002/adfm.201200888

    Google Scholar 

  53. [53]

    R. Balog, B. Jørgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lægsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann and L. Hornekær, “Band gap opening in graphene induced by patterned hydrogen adsorption”, Nat. Mater. 9, 315–319 (2010). http://dx.doi.org/10.1038/nmat2710

    Google Scholar 

  54. [54]

    F. Cervantes-Sodi, G. Csanyi, S. Piscanec and A. C Ferrari, “Edge functionalized and substitutionally doped graphene nanoribbons: electronic and spin properties”, Phys. Rev. B 77(16), 165427–165439 (2008). http://dx.doi.org/10.1103/PhysRevB.77.165427

    Google Scholar 

  55. [55]

    M. Vanevic, M. S. Stojanovic and M. Kindermann, “Character of electronic states in graphene antidot lattices: flat bands and spatial localization”, Phys. Rev. B 80(4), 045410–045417 (2009). http://dx.doi.org/10.1103/PhysRevB.80.045410

    Google Scholar 

  56. [56]

    M. De La Pierre, P. Karamanis, J. Baima, R. Orlando, C. Pouchan, and R. Dovesi, “Ab initio periodic simulation of the spectroscopic and optical properties of novel porous graphene phases”, J. Phys. Chem. C 117(5), 2222–2229 (2013). http://dx.doi.org/10.1021/jp3103436

    Google Scholar 

  57. [57]

    G. Brunetto, P. A. S. Autreto, L. D. Machado, B. I. Santos, R. P. B. dos Santos, D. S. Galvão, “A nonzero gap two-dimensional carbon allotrope from porous graphene”, J. Phys. Chem. C 116(23), 12810–12813 (2012). http://dx.doi.org/10.1021/jp211300n

    Google Scholar 

  58. [58]

    Y. Matsuda, J. Tahir-Kheli and W. A. III Goddard, “Definitive band gaps for single-wall carbon nanotubes”, J. Phys. Chem. Lett. 1(19), 2946 (2010). http://dx.doi.org/10.1021/jz100889u

    Google Scholar 

  59. [59]

    M. D. Fischbein and M. Drndic, “Electron beam nanosculpting of suspended graphene sheets”, Appl. Phys. Lett. 93(11), 113107–113109 (2008). http://dx.doi.org/10.1063/1.2980518

    Google Scholar 

  60. [60]

    D. Fox, A. O’Neill, D. Zhou, M. Boese, J. N. Coleman and H. Z. Zhang, “Nitrogen assisted etching of grapheme layers in a scanning electron microscope”, Appl. Phys. Lett. 98(24), 243117–243119 (2011). http://dx.doi.org/10.1063/1.3601467

    Google Scholar 

  61. [61]

    Z. Fan, Q. Zhao, T. Li, J. Yan, Y. Ren, J. Feng and T. Wei, “Easy synthesis of porous graphene nanosheets and their use in supercapacitors”, Carbon 50, 1699–1712 (2012). http://dx.doi.org/10.1016/j.carbon.2011.12.016

    Google Scholar 

  62. [62]

    W. S. Hummers and R. E Offeman, “Preparation of graphitic oxide”, J. Am. Chem. Soc. 80(6), 1339 (1958). http://dx.doi.org/10.1021/ja01539a017

    Google Scholar 

  63. [63]

    M. Koinuma, C. Ogata, Y. Kamei, K. Hatakeyama, H. Tateishi, Y. Watanabe, T. Taniguchi, K. Gezuhara, S. Hayami, A. Funatsu, M. Sakata, Y. Kuwahara, S. Kurihara and Y. Matsumoto, “Photochemical engineering of graphene oxide nanosheets”, J. Phys. Chem. C 116(37), 19822–19827 (2012). http://dx.doi.org/10.1021/jp305403r

    Google Scholar 

  64. [64]

    P. Russo, A. Hu, G. Compagnini, W. W. Dule and N. Y. Zhou. Submitted to Nanoscale.

  65. [65]

    H. O. Jeschke, M. E. Garcia and K. H. Bennemann, “Theory for the ultrafast ablation of graphite films”, Phys. Rev. Lett. 87(1), 015003–015006 (2001). http://dx.doi.org/10.1103/PhysRevLett.87.015003

    Google Scholar 

  66. [66]

    Y. Miyamoto, H. Zhang and D. Tománek, “Photoexfoliation of graphene from graphite: an Ab initio study”, Phys. Rev. Lett. 104(20), 208302–208307 (2010). http://dx.doi.org/10.1103/PhysRevLett.104.208302

    Google Scholar 

  67. [67]

    L. D. Smoot and P. J. Smith, “Coal combustion and gasification: gasification of coal in practical flames”, Plenum Press: New York, 151–162 (1985).

    Google Scholar 

  68. [68]

    D. Fan, Y. Liu, J. He, Y. Zhou and Y. Yang, “Porous graphene-based materials by thermolytic cracking”, J. Mater. Chem. 22, 1396–1402 (2012). http://dx.doi.org/10.1039/c1jm13947a

    Google Scholar 

  69. [69]

    Y. Matsumoto, M. Koinuma, S. Ida, S. Hayami, T. Taniguchi, K. Hatakeyama, H. Tateishi, Y. Watanabe and S. Amano, “Photoreaction of graphene oxide nanosheets in water”, J. Phys. Chem. C 115(39), 19280–19286 (2011). http://dx.doi.org/10.1021/jp206348s

    Google Scholar 

  70. [70]

    M. Lotya, P. J. King, U. Khan, S. De and J. N. Coleman, “High-concentration, surfactant-stabilized graphene dispersions”, ACS Nano 4(6), 3155–3162 (2010). http://dx.doi.org/10.1021/nn1005304

    Google Scholar 

  71. [71]

    J. Shen, Y. Zhu, X. Yang, J. Zong, J. Zhang and C. Li, “One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light”, New J. Chem. 36, 97–101 (2012). http://dx.doi.org/10.1039/c1nj20658c

    Google Scholar 

  72. [72]

    K. Sint, B. Wang and P. Kral, “Selective ion passage through functionalized graphene nanopores”, J. Am. Chem. Soc. 130(49), 16448–16449 (2008). http://dx.doi.org/10.1021/ja804409f

    Google Scholar 

  73. [73]

    H. Liu, S. Dai and D. Jiang, “Insights into CO2/N2 separation through nanoporous graphene from molecular dynamics”, Nanoscale 5, 9984–9987 (2013). http://dx.doi.org/10.1039/c3nr02852f

    Google Scholar 

  74. [74]

    H. Liu, S. Dai and D. Jiang, “Permeance of H2 through porous graphene from molecular dynamics”, Solid State Commun. In press (2013). http://dx.doi.org/10.1016/j.ssc.2013.07.004

    Google Scholar 

  75. [75]

    H. W. Kim, H. W. Yoon, S.-M. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, H. Yang, U. Paik, S. Kwon, J.-Y. Choi, H. B. Park, “Selective gas transport through few-layered graphene and graphene oxide membranes”, Science 342, 91–95 (2013). http://dx.doi.org/10.1126/science.1236098

    Google Scholar 

  76. [76]

    H. Li, Z. Song, X. Zhang, Y. Huang, S. Li, Y. Mao, H. J. Ploehn, Y. Bao and M. Yu, “Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation”, Science 342, 95–98 (2013). http://dx.doi.org/10.1126/science.1236686

    Google Scholar 

  77. [77]

    S.-M. Paek, E. Yoo and I. Honma, “Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure”, Nano Lett. 9(1), 72–75 (2009). http://dx.doi.org/10.1126/science.1236686

    Google Scholar 

  78. [78]

    M. Liang and L. Zhi, “Graphene-based electrode materials for rechargeable lithium batteries”, J. Mater. Chem. 19, 5871–5878 (2009). http://dx.doi.org/10.1039/b901551e

    Google Scholar 

  79. [79]

    M. Tarascon and M. Armand, “Issues and challenges facing rechargeable lithium batteries”, Nature 414, 359–367 (2001). http://dx.doi.org/10.1038/35104644

    Google Scholar 

  80. [80]

    Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa and T. Miyasaka, “Tin-based amorphous oxide: a high-capacity lithium-ion-storage material”, Science 276(5317), 1395–1397 (1997). http://dx.doi.org/10.1126/science.276.5317.1395

    Google Scholar 

  81. [81]

    P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J. M. Tarascon, “Nano-sized transition-metal oxides as negative-electrode-materials for lithium-ion batteries”, Nature 407, 496–499 (2000). http://dx.doi.org/10.1038/35035045

    Google Scholar 

  82. [82]

    G. Wang, B. Wang, X. Wang, J. Park, S. Dou, H. Ahn and K. Kim, “Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries”, J. Mater. Chem. 19, 8378–8384 (2009). http://dx.doi.org/10.1039/b914650d

    Google Scholar 

  83. [83]

    E. Yoo, J. Kim, E. Hosono, H.-S. Zhou, T. Kudo and I. Honma, “Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries”, Nano Lett. 8(8), 2277–2282 (2008). http://dx.doi.org/10.1021/nl800957b

    Google Scholar 

  84. [84]

    T. Takamura, K. Endo, L. Fu, Y. Wu, K. J. Lee and T. Matsumoto, “Identification of nano-sized holes by TEM in the graphene layer of graphite and the high rate discharge capability of Li-ion battery anodes”, Electrochim. Acta 53(3), 1055–1061 (2007). http://dx.doi.org/10.1016/j.electacta.2007.03.052

    Google Scholar 

  85. [85]

    G. Zhang, D. Wang, W. Xu, J. Xiao and R. E. Williford, “Ambient operation of Li/air batteries”, J. Power Sources 195(3), 4332–4337 (2010). http://dx.doi.org/10.1016/j.jpowsour.2010.01.022

    Google Scholar 

  86. [86]

    J. Read, K. Mutolo, M. Ervin, W. Behl, J. Wolfenstine, A. Driedger and D. Foster, “Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery”, J. Electrochem. Soc. 150(10), 1351–1356 (2003). http://dx.doi.org/10.1149/1.1606454

    Google Scholar 

  87. [87]

    A. Débart, A. J. Paterson, J. Bao and P. G. Bruce, “a-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries”, Angew. Chem. 120(24), 4597–4600 (2008). http://dx.doi.org/10.1002/ange.200705648

    Google Scholar 

  88. [88]

    J. Christensen, P. Albertus, R. S. Sanchez-Carrera, T. Lohmann, B. Kozinsky, R. Liedtke, J. Ahmed and A. Kojic, “A critical review of Li/air batteries”, J. Electrochem. Soc. 159(2), 1–30 (2012). http://dx.doi.org/10.1149/2.086202jes

    Google Scholar 

  89. [89]

    P. Simon and Y. Gogotsi, “Materials for electrochemical capacitors”, Nat. Mater. 7, 845–854 (2008). http://dx.doi.org/10.1038/nmat2297

    Google Scholar 

  90. [90]

    A. Burke, “Ultracapacitors: why, how, and where is the technology”, J. Power Sources 91(1), 37–50 (2000). http://dx.doi.org/10.1016/S0378-7753 (00)00485-7

    Google Scholar 

  91. [91]

    E. Conway, V. Birss and J. Wojtowicz, “The role and utilization of pseudocapacitance for energy storage by supercapacitors”, J. Power Sources 66(1–2), 1–14 (1997). http://dx.doi.org/10.1016/S0378-7753(96)02474-3

    Google Scholar 

  92. [92]

    H. Wang, Y. Liang, T. Mirfakhari, Z. Chen, H. S. Casalongue and H. Dai, “Advanced asymmetrical supercapacitors based on graphene hybrid materials”, Nano Res. 4(8), 729–736 (2011). http://dx.doi.org/10.1007/s12274-011-0129-6

    Google Scholar 

  93. [93]

    E. Frackowiak and F. Béguin, “Carbon materials for the electrochemical storage of energy in capacitors”, Carbon 39(6), 937–950 (2001). http://dx.doi.org/10.1016/S0008-6223(00)00183-4

    Google Scholar 

  94. [94]

    M. Endo, T. Takeda, Y. J. Kim, K. Koshiba and K. Ishii, “High power electric double layer capacitor (EDLC’s); from operating principle to pore size control in advanced activated carbons”, Carbon Science 1(3–4), 117–128 (2001).

    Google Scholar 

  95. [95]

    D. Qu and H. Shi, “Studies of activated carbons used in double-layer capacitors”, J. Power Sources 74(1), 99–107 (1998). http://dx.doi.org/10.1016/S0378-7753(98)00038-X

    Google Scholar 

  96. [96]

    J. P. Zheng, P. J. Cygan and T. R. Jow, “Hydrous ruthenium oxide as an electrode material for electrochemical capacitors”, J. Electrochem. Soc. 142(8), 2699–2703 (1995). http://dx.doi.org/10.1149/1.2050077

    Google Scholar 

  97. [97]

    D. Yu and L. Dai, “Self-assembled graphene/carbon nanotube hybrid films for supercapacitors”, J. Phys. Chem. Lett. 1(2), 467–470 (2009). http://dx.doi.org/10.1021/jz9003137

    Google Scholar 

  98. [98]

    K. H. An, W. S. Kim, Y. S. Park, J. M. Moon, D. J. Bae, S. C. Lim, Y. S. Lee and Y. H. Lee, “Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes”, Adv. Funct. Mater. 11(5), 387–392 (2001). http://dx.doi.org/10.1002/1616-3028 (200110)11:5<387::AID-ADFM387>3.3.CO;2-7

    Google Scholar 

  99. [99]

    D. Stoller, S. Park, Y. Zhu, J. An and R. S. Ruoff, “Graphene-based ultracapacitors”, Nano Lett. 8(10), 3498–3502 (2008). http://dx.doi.org/10.1021/nl802558y

    Google Scholar 

  100. [100]

    Y. Zhu, S. Murali, M. D. Stoller, A. Velamakanni, R. D. Piner and R. S. Ruoff, “Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors”, Carbon 48(7), 2118–2122 (2010). http://dx.doi.org/10.1016/j.carbon.2010.02.001

    Google Scholar 

  101. [101]

    Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen and Y. Chen, “Supercapacitor devices based on graphene materials”, J. Phys. Chem. C 113(30), 13103–13107 (2009). http://dx.doi.org/10.1021/jp902214f

    Google Scholar 

  102. [102]

    B. Fuertes, F. Pico and J. M. Rojo, “Influence of pore structure on electric double-layer capacitance of template mesoporous carbons”, J. Power Sources 133(2), 329–336 (2004). http://dx.doi.org/10.1016/j.jpowsour.2004.02.013

    Google Scholar 

  103. [103]

    C. Liu, Z. Yu, D. Neff, A. Zhamu and B. Z. Jang, “Graphene-based supercapacitor with an ultrahigh energy density”, Nano Lett. 1(12), 4863–4868 (2010). http://dx.doi.org/10.1021/nl102661q

  104. [104]

    L. L. Zhang, R. Zhou and X. S. Zhao, “Graphene-based materials as supercapacitor electrodes”, J. Mater. Chem. 20, 5983–5992 (2010). http://dx.doi.org/10.1039/c000417k

    Google Scholar 

  105. [105]

    L. L. Zhang, X. Zhao, M. D. Stoller, Y. Zhu, H. Ji, S. Murali, Y. Wu, S. Perales, B. Clevenger and R. S. Ruoff, “Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors”, Nano Lett. 12(4), 1806–1812 (2012). http://dx.doi.org/10.1021/nl203903z

    Google Scholar 

  106. [106]

    Y. Han, B. Oyilmaz, Y. Zhang and P. Kim.Energy, “Band-gap engineering of graphene nanoribbons”, Phys. Rev. Lett. 98(20), 206805–206808 (2007). http://dx.doi.org/10.1103/PhysRevLett.98.206805

    Google Scholar 

  107. [107]

    B. Z. Jiang and A. Zhamu, “Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review”, J. Mater. Sci. 43, 5092–5101 (2008). http://dx.doi.org/10.1007/s10853-008-2755-2

    Google Scholar 

  108. [108]

    H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li, “P25-graphene composite as a high performance photocatalyst”, ACS Nano 4(1), 380–386 (2010). http://dx.doi.org/10.1021/nn901221k

    Google Scholar 

  109. [109]

    X. Y. Zhang, H. P. Li, X. L. Cui and Y. Lin, “Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting”, J. Mater. Chem. 20, 2801–2806 (2010). http://dx.doi.org/10.1039/b917240h

    Google Scholar 

  110. [110]

    G. Jiang, Z. Lin, C. Chen, L. Zhu, Q. Chang, N. Wang, W. Wei and H. Tang, “TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants”, Carbon 49(8), 2693–2701 (2011). http://dx.doi.org/10.1016/j.carbon.2011.02.059

    Google Scholar 

  111. [111]

    V. Štengl, S. Bakardjieva, T. M. Grygar, J. Bludská and M. Kormunda, “TiO2-graphene oxide nanocomposite as advanced photocatalytic materials”, Chem. Centr. J. 7, 41–53 (2013). http://dx.doi.org/10.1186/1752-153X-7-41

    Google Scholar 

  112. [112]

    A. Hu, P. Peng, H. Alarifi, X. Y. Zhang, J. Y. Guo, Y. Zhou and W. W. Duley, “Femtosecond laser welded nanostructures and plasmonic devices”, J. Laser Appl. 24(4), 042001–7 (2012). http://dx.doi.org/10.2351/1.3695174

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anming Hu.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Russo, P., Hu, A. & Compagnini, G. Synthesis, Properties and Potential Applications of Porous Graphene: A Review. Nano-Micro Lett. 5, 260–273 (2013). https://doi.org/10.1007/BF03353757

Download citation

Keywords

  • Graphene
  • Porous graphene
  • Gas separation
  • Energy storage