Advertisement

Nano-Micro Letters

, Volume 5, Issue 1, pp 47–56 | Cite as

Acetylcholinesterase Biosensor Based on Poly (diallyldimethylammonium chloride)-multi-walled Carbon Nanotubes-graphene Hybrid Film

  • Xia Sun
  • Zhili Gong
  • Yaoyao Cao
  • Xiangyou WangEmail author
Open Access
Article

Abstract

In this paper, an amperometric acetylcholinesterase (AChE) biosensor for quantitative determination of carbaryl was developed. Firstly, the poly (diallyldimethy-lammonium chloride) -multi-walled carbon nanotubes-graphene hybrid film was modified onto the glassy carbon electrode (GCE) surface, then AChE was immobilized onto the modified GCE to fabricate the AChE biosensor. The morphologies and electrochemistry properties of the prepared AChE biosensor were investigated by using scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. All variables involved in the preparation process and analytical performance of the biosensor were optimized. Based on the inhibition of pesticides on the AChE activity, using carbaryl as model compounds, the biosensor exhibited low detection limit, good reproducibility and high stability in a wide range. Moreover, the biosensor can also be used for direct analysis of practical samples, which would provide a new promising tool for pesticide residues analysis.

Keywords

Biosensor Acetylcholinesterase Multi-walled carbon nanotubes Graphene Poly (diallyldimethylammonium chloride) 

References

  1. [1]
    D. W. Miwa, G. R. P. Malpass, S. A. S. Machado and A. J. Motheo, “Electrochemical degradation of carbaryl on oxide electrodes”, Water Res. 40(17), 3281–3289 (2006). http://dx.doi.org/10.1016/j.watres.2006.06.033CrossRefGoogle Scholar
  2. [2]
    F. Arduini, F. Ricci, C. S. Tuta, D. Moscone, A. Amine and G. Palleschi, “Detection of carbamic and organophosphorous pesticides in water samples using a cholinesterase biosensor based on Prussian Bluemodified screen-printed electrode”, Anal. Chim. Acta. 580(2), 155–162 (2006). http://dx.doi.org/10.1016/j.aca.2006.07.052CrossRefGoogle Scholar
  3. [3]
    J. M. Abad, F. Pariente, L. Hernández, H. D. Abruna and E. Lorenzo, “Determination of organophosphorus and carbamate pesticides using a piezoelectric biosensor”, Anal. Chem. 70(14), 2848–2855 (1998). http://dx.doi.org/10.1021/ac971374mCrossRefGoogle Scholar
  4. [4]
    D. Du, M. H. Wang, J. Cai, Y. Tao, H. Y. Tu and A. D. Zhang, “Immobilization of acetylcholinesterase based on the controllable adsorption of carbon nanotubes onto an alkanethiol monolayer for carbaryl sensing”, Analyst 133(12), 1790–1795 (2008). http://dx.doi.org/10.1039/b803851aCrossRefGoogle Scholar
  5. [5]
    A. Vakurov, C. E. Simpson, C. L. Daly, T. D. Gibson and P. A. Millner, “Acetylecholinesterasebased biosensor electrodes for organophosphate pesticide detection: II. Immobilization and stabilization of acetylecholinesterase”, Biosens. Bioelectron. 20(11), 2324–2329 (2005). http://dx.doi.org/10.1016/j.bios.2004.07.022CrossRefGoogle Scholar
  6. [6]
    D. Du, S. Z. Chen, J. Cai and A. D. Zhang, “Electrochemical pesticide sensitivity test using acetylcholinesterase biosensor based on colloidal gold nanoparticle modified sol-gel interface”, Talanta 74(4), 766–772 (2008). http://dx.doi.org/10.1016/j.talanta.2007.07.014CrossRefGoogle Scholar
  7. [7]
    N. Sattarahmady, H. Heli and A. A. Moosavi-Movahedi, “An electrochemical acetylcholine biosensor based on nanoshells of hollow nickel microspheres-carbon microparticles-Nafion nanocomposite”, Biosens. Bioelectron. 25(10), 2329–2335 (2010). http://dx.doi.org/10.1016/j.bios.2010.03.031CrossRefGoogle Scholar
  8. [8]
    M. C. Pietrogrande, G. Blo and C. Bighi, “Highperformance liquid chromatographic determination of naphthols as 4-aminoantipyrine derivatives: Application to carbaryl”, J. Chromatogr. 349(1), 63–68 (1985). http://dx.doi.org/10.1016/S0021-9673(00)90633-2CrossRefGoogle Scholar
  9. [9]
    B. D. McGarvey, “High-performance liquid chromatographic methods for the deter- mination of N-methylcarbamate pesticides in water. soil, plants and air”, J. Chromatogr. 642(1–2), 89–105 (1993). http://dx.doi.org/10.1016/0021-9673 (93)80079-NCrossRefGoogle Scholar
  10. [10]
    E. P. Syrago-Styliani, T. Anthony and A. S. Panayotis. “Determination of carbofuran, carbaryl and their main metabolites in plasma samples of agricultural populations using gas chromatographytandem mass spectrometry”, Anal. Bioanal. Chem. 385(8), 1444–1456 (2006). http://dx.doi.org/10.1007/s00216-006-0569-0CrossRefGoogle Scholar
  11. [11]
    C. Mohan, Y. Kumar, J. Madan and N. Saxena, “Multiresidue analysis of neonicotinoids by solid-phase extraction technique using high-performance liquid chromatography”, Environ. Monit. Assess. 165(1–4), 573–576 (2010). http://dx.doi.org/10.1007/s10661-009-0968-8CrossRefGoogle Scholar
  12. [12]
    X. Sun and X. Y. Wang, “Acetylcholinesterase biosensor based on prussian blue-modified electrode for detecting organophosphorous pesticides”, Biosens. Bioelectron. 25(12), 2611–2614 (2010). http://dx.doi.org/10.1016/j.bios.2010.04.028CrossRefGoogle Scholar
  13. [13]
    D. Du, W. J. Chen, W. Y. Zhang, D. L. Liu, H. B. Li and Y. H. Lin, “Covalent coupling of organophosphorus hydrolase loaded quantum dots to carbon nanotube/Au nanocomposite for enhanced detection of methyl parathion”, Biosens. Bioelectron. 25(6), 1370–1375 (2010). http://dx.doi.org/10.1016/j.bios.2009.10.032CrossRefGoogle Scholar
  14. [14]
    M. Shi, J. J. Xu, S. Zhang, B. H. Liu and J. L. Kong, “A mediator-free screen-printed amperometric biosensor for screening of organophosphorus pesticides with flow-injection analysis (FIA) system”, Talanta 68(4), 1089–1095 (2006). http://dx.doi.org/10.1016/j.talanta.2005.07.007CrossRefGoogle Scholar
  15. [15]
    F. N. Kok and V. Hasirci, “Determination of binary pesticide mixtures by an acetylcholinesterasecholine oxidase biosensor”, Biosens. Bioelectron. 19(7), 661–665 (2004). http://dx.doi.org/10.1016/j.bios.2003.07.002CrossRefGoogle Scholar
  16. [16]
    A. Amine, H. Mohammadi, I. Bourais and G. Palleschi, “Enzyme inhibition-based biosensors for food safety and environmental monitoring”, Biosens. Bioelectron. 21(8), 1405–1423 (2006). http://dx.doi.org/10.1016/j.bios.2005.07.012CrossRefGoogle Scholar
  17. [17]
    D. Du, S. Z. Chen, J. Cai and A. D. Zhang, “Immobilization of acetylcholinesterase on gold nanoparticles embedded in sol-gel film for amperometric detection of organophosphorous insecticide”, Biosens. Bioelectron. 23(1), 130–134 (2007). http://dx.doi.org/10.1016/j.bios.2007.03.008CrossRefGoogle Scholar
  18. [18]
    S. Sotiropoulou and N. A. Chaniotakis, “Lowering the detection limit of the acetylcholinesterase biosensor using a nanoporous carbon matrix”, Anal. Chim. Acta. 530(2), 199–204 (2005). http://dx.doi.org/10.1016/j.aca.2004.09.007CrossRefGoogle Scholar
  19. [19]
    D. Shan, E. Han, H. G. Xue and S. Cosnier, “Selfassembled films of hemoglobin/laponite/chitosan: application for the direct electrochemistry and catalysis to hydrogen peroxide”, Biomacromolecules 8(10), 3041–3046 (2007). http://dx.doi.org/10.1021/bm070329dCrossRefGoogle Scholar
  20. [20]
    W. Zhao, P. Y. Ge, J. J. Xu and H. Y. Chen, “Selective detection of hypertoxic organophosphates pesticides via PDMS composite based acetylcholinesterase- inhibition biosensor”, Environ. Sci. Technol. 43(17), 6724–6729 (2009).http://dx.doi.org/10.1021/es900841nCrossRefGoogle Scholar
  21. [21]
    L. Q. Rong, C. Yang, Q. Y. Qian and X. H. Xia, “Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes”, Talanta 72(2), 819–824 (2007). http://dx.doi.org/10.1016/j.talanta.2006.12.037CrossRefGoogle Scholar
  22. [22]
    Y. Wang, Y. M. Li, L. H. Tang, J. Lu and J. H. Li, “Application of graphene-modified electrode for selective detection of dopamine”, Electrochem. Commun. 11(4), 889–892 (2009). http://dx.doi.org/10.1016/j.elecom.2009.02.013CrossRefGoogle Scholar
  23. [23]
    C. S. Shan, H. F. Yang, J. F. Song, D. X. Han, A. Ivaska and L. Niu, “Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene”, Anal. Chem. 81(6), 2378–2382 (2009). http://dx.doi.org/10.1021/ac802193cCrossRefGoogle Scholar
  24. [24]
    X. H. Kang, J. Wang, H. Wu, I. A. Aksay, J. Liu and Y. H. Lin, “Glucose oxidase-graphenechitosan modified electrode for direct electrochemistry and glucose sensing”, Biosens. Bioelectron. 25(4), 901–905 (2009).http://dx.doi.org/10.1016/j.bios.2009.09.004CrossRefGoogle Scholar
  25. [25]
    Y. Li, R. Yuan, Y. Q. Chai and Z. J. Song, “Electrodeposition of gold-platinum alloy nanoparticles on carbon nanotubes as electrochemical sensing interface for sensitive detection of tumor marker”, Electrochim. Acta. 56(19), 6715–6721. http://dx.doi.org/10.1016/j.electacta.2011.05.066
  26. [26]
    J. D. Huang, X. R. Xing, X. M. Zhang, X. R. He, Q. Lin, W. J. Lian and H. Zhu, “A molecularly imprinted electrochemical sensor based on multiwalled carbon nanotube-gold nanoparticle composites and chitosan for the detection of tyramine”, Food Res. Int. 44(1), 276–281 (2011). http://dx.doi.org/10.1016/j.foodres.2010.10.020CrossRefGoogle Scholar
  27. [27]
    Z. Yang, R. G. Gao, N. T. Hu, J. Chai, Y. W. Cheng, L. Y. Zhang, H. Wei, E. S. Kong and Y. F. Zhang, “The prospective two-dimensional graphene nanosheets: preparation, functionalization, and applications”, Nano-Micro Lett. 4(1), 1–9 (2012). http://dx.doi.org/10.3786/nml.v4i1.p1-9CrossRefGoogle Scholar
  28. [28]
    R. Y. Zhang and X. M. Wang, “One step synthesis of multiwalled carbon nanotube/gold nanocomposites for enhancing electrochemical response”, Chem. Mater. 19(5), 976–978 (2007). http://dx.doi.org/10.1021/cm062791vCrossRefGoogle Scholar
  29. [29]
    T. Yang, N. Zhou, Y. C. Zhang, W. Zhang, K. Jiao and G. C. Li, “Synergistically improved sensitivity for the detection of specific DNA sequences using polyaniline nanofibers and multi-walled carbon nanotubes composites”, Biosens. Bioelectron. 24(7), 2165–2170 (2009). http://dx.doi.org/10.1016/j.bios.2008.11.011CrossRefGoogle Scholar
  30. [30]
    Y. H. Xiao and C. M. Li, “Nanocomposites: from fabrications to electrochemical bioapplications”, Electroanal. 20(6), 648–662 (2008). http://dx.doi.org/10.1002/elan.200704125CrossRefGoogle Scholar
  31. [31]
    H. Zhang, L. Z. Fan and S. H. Yang, “Significantly accelerated direct electron-transfer kinetics of hemoglobin in a C60-MWCNT nanocomposite film”, Chem. Eur. J. 12(27), 7161–7166 (2006). http://dx.doi.org/10.1002/chem.200600055CrossRefGoogle Scholar
  32. [32]
    M. Zhou, J. D. Guo, L. P. Guo and J. Bai, “Electrochemical sensing platform based on the highly ordered mesoporous carbon-fullerene system”, Anal. Chem. 80(12), 4642–4650 (2008). http://dx.doi.org/10.1021/ac702496kCrossRefGoogle Scholar
  33. [33]
    X. Chen, J. Zhu, Q. Xi and W. S. Yang, “A high performance electrochemical sensor for acetaminophen based on single-walled carbon nanotube-graphene nanosheet hybrid films”, Sens. Actuators B 161(1), 648–654 (2012). http://dx.doi.org/10.1016/j.snb.-2011.10.085CrossRefGoogle Scholar
  34. [34]
    Y. Y. Wang, X. S. Wang, B. Y. Wu, Z. X. Zhao, F. Yin, S. Li, X. Qin and Q. Chen, “Dispersion of single-walled carbon nanotubes in poly(diallyldimethylammonium chloride) for preparation of a glucose biosensor”, Sens. Actuators B 130(2), 809–815 (2008). http://dx.doi.org/10.1016/j.snb.2007.10.054CrossRefGoogle Scholar
  35. [35]
    J. Manso, M. L. Mena, P. Yáñez-Sedeño and J. M. Pingarrón, “Alcohol dehydrogenase amperometric biosensor based on a colloidal gold-carbon nanotubes composite electrode”, Electrochim. Acta 53(11), 4007–4012 (2008). http://dx.doi.org/10.1016/j.electacta.2007.10.003CrossRefGoogle Scholar
  36. [36]
    B. Kim, H. Park and W. M. Sigmund, “Electrostatic interactions between shortened multiwall carbon nanotubes and polyelectrolytes”, Langmuir 19(6), 2525–2527 (2003). http://dx.doi.org/10.1021/la026746nCrossRefGoogle Scholar
  37. [37]
    B. Kim and W. M. Sigmund, “Self-alignment of shortened multiwall carbon nanotubes on polyelectrolyte layers”, Langmuir 19(11), 4848–4851 (2003). http://dx.doi.org/10.1021/la026679xCrossRefGoogle Scholar
  38. [38]
    J. J. Rouse and P. T. Lillehei, “Electrostatic assembly of polymer/single walled carbon nanotube multilayer films”, Nano Lett. 3(1), 59–62 (2003). http://dx.doi.org/10.1021/nl025780jCrossRefGoogle Scholar
  39. [39]
    R. Z. Ma, T. Sasaki and Y. Bando, “Layer-by-layer assembled multilayer films of titanate nanotubes, Ag- or Au-loaded nanotubes, and nanotubes/nanosheets with polycations”, J. Am. Chem. Soc. 126(33), 10382–10388 (2004). http://dx.doi.org/10.1021/ja048855pCrossRefGoogle Scholar
  40. [40]
    A. B. Artyukhin, O. Bakajin, P. Stroeve and A. Noy, “Layer-by-layer electrostatic self-assembly of polyelectrolyte nanoshells on individual carbon nanotube templates”, Langmuir 20(4), 1442–1448 (2004). http://dx.doi.org/10.1021/la035699bCrossRefGoogle Scholar
  41. [41]
    K. P. Liu, J. J. Zhang, G. H. Yang, C. M. Wang and J. J. Zhu, “Direct electrochemistry and electrocatalysis of hemoglobin based on poly (diallyldimethylammonium chloride) functionalized graphene sheets/room temperature ionic liquid composite film”, Electrochem. Commun. 12(3), 402–405 (2010). http://dx.doi.org/10.1016/j.elecom.2010.01.004CrossRefGoogle Scholar
  42. [42]
    Q. L. Feng, K. P. Liu, J. J. Fu, Y. Z. Zhang, Z. X. Zheng, C. M. Wang, Y. L. Du and W. C. Ye, “Direct electrochemistry of hemoglobin based on nano-composite film of gold nanopaticles and poly (diallyldimethylammonium chloride) functionalized graphene”, Electrochim. Acta. 60, 304–308 (2012). http://dx.doi.org/10.1016/j.electacta.2011.11.048CrossRefGoogle Scholar
  43. [43]
    M. Eguílaz, R. Villalonga, P. Yanez-Sedeno and J. M. Pingarron, “Designing electrochemical interfaces with functionalized magnetic nanoparticles and wrapped carbon nanotubes as platforms for the construction of high-performance bienzyme biosensors”, Anal. Chem. 83(20), 7807–7814 (2011). http://dx.doi.org/10.1021/ac201466mCrossRefGoogle Scholar
  44. [44]
    D. W. Wang, F. Li, M. Liu, G. Q. Lu and H. M. Cheng, “3D periodic hierarchical porous graphitic carbon material for high rate electrochemical capacitive energy storage”, Angew. Chem. Int. Ed. 47(2), 373–376 (2007). http://dx.doi.org/10.1002/anie.200702721CrossRefGoogle Scholar
  45. [45]
    A. Walcarius and A. Kuhn, “Ordered porous thin films in electrochemical analysis”, Trends Anal. Chem. 27(7), 593–603 (2008). http://dx.doi.org/10.1016/j.trac.2008.03.011CrossRefGoogle Scholar
  46. [46]
    J. Zhang, J. Lia, F. Yang, B. L. Zhang and X. R. Yang, “Preparation of prussian blue@Pt nanoparticles/ carbon nanotubes composite material for efficient determination of H2O2”, Sens. Actuators B 143(1), 373–380 (2009). http://dx.doi.org/10.1016/j.snb.2009.08.018CrossRefGoogle Scholar
  47. [47]
    D. Du, S. Z. Chen, D. D. Song, H. L. Li and X. Chen, “Development of acetylcholinesterase biosensor based on CdTe quantum dots/gold nanoparticles modified chitosan microspheres interface”, Biosens. Bioelectron. 24(3), 475–479 (2008). http://dx.doi.org/10.1016/j.bios.2008.05.005CrossRefGoogle Scholar
  48. [48]
    N. Chauhan and C. S. Pundir, “An amperometric biosensor based on acetylcholinesterase immobilized onto iron oxide nanoparticles/multi-walled carbon nanotubes modified gold electrode for measurement of organophosphorus insecticides”, Anal. Chim. Acta. 701(1), 66–74 (2011). http://dx.doi.org/10.1016/j.aca.2011.06.014CrossRefGoogle Scholar
  49. [49]
    M. Bernabei, S. Chiavarii, C. Cremisini and G. Palleschi, “Anticholinesterase activity measurement by a choline biosensor: application in water analysis”, Biosens. Bioelectron. 8(5), 265–271 (1993). http://dx.doi.org/10.1016/0956-5663 (93)80014-GCrossRefGoogle Scholar
  50. [50]
    D. Du, X. X. Ye, J. Cai, J. Liu and A. D. Zhang, “Acetylcholinesterase biosensor design based on carbon nanotube-encapsulated polypyrrole and polyaniline copolymer for amperometric detection of organophosphates”, Biosens. Bioelectron. 25(11), 2503–2508 (2010). http://dx.doi.org/10.1016/j.bios.2010.04.018CrossRefGoogle Scholar
  51. [51]
    K. Wang, Q. Liu, L. Dai, J. J. Yan, C. Ju, B. J. Qiu and X. Y. Wu, “A highly sensitive and rapid organophosphate biosensor based on enhancement of CdS-decorated graphene nanocomposite”, Anal. Chim. Acta 695(1–2), 84–88 (2011). http://dx.doi.org/10.1016/j.aca.2011.03.042CrossRefGoogle Scholar
  52. [52]
    Y. H. Song, M. Zhang, L. Wang, L. L. Wan, X. P. Xiao, S. H. Ye and J. R. Wang, “A novel biosensor based on acetylecholinesterase/prussian blue-chitosan modified electrode for detection of carbaryl pesticides”, Electrochim. Acta 56(21), 7267–7271 (2011). http://dx.doi.org/10.1016/j.electacta.2011.06.054CrossRefGoogle Scholar
  53. [53]
    J. Caetano and S. A. S. Machado, “Determination of carbaryl in tomato “in natura” using an amperometric biosensor based on the inhibition of acetylcholinesterase activity”, Sens. Actuators B 129(1), 40–46 (2008). http://dx.doi.org/10.1016/j.snb.2007.07.098CrossRefGoogle Scholar
  54. [54]
    D. Du, J. W. Ding, J. Cai and A. D. Zhang, “Determination of carbaryl pesticide using amperometric acetylcholinesterase sensor formed by electrochemically deposited chitosan”, Colloids Surf. B 58(2), 145–150 (2007). http://dx.doi.org/10.1016/j.colsurfb.2007.03.006CrossRefGoogle Scholar
  55. [55]
    F. C. Moraes, L. H. Mascaro, S. A. S. Machado and C. M. A. Brett, “Direct electrochemical determination of carbaryl using a multi-walled carbon nanotube/ cobalt phthalocyanine modified electrode”, Talanta 79(5), 1406–1411 (2009). http://dx.doi.org/10.1016/j.talanta.2009.06.013CrossRefGoogle Scholar
  56. [56]
    I. Cesarino, F. C. Moraes, M. R. V. Lanza and S. A. S. Machado, “Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline-carbon nanotubes”, Food Chem. 135(3), 873–879 (2012). http://dx.doi.org/10.1016/j.foodchem.2012.04.147CrossRefGoogle Scholar
  57. [57]
    D. Du, S. Z. Chen, J. Cai and D. D. Song, “Comparison of drug sensitivity using acetylcholinesterase biosensor based on nanoparticles-chitosan sol-gel composite”, J. Electroanal. Chem. 611(1–2), 60–66 (2007). http://dx.doi.org/10.1016/j.jelechem.2007.08.007CrossRefGoogle Scholar
  58. [58]
    H. S. Yin, S. Y. Ai, J. Xu, W. J. Shi and L. S. Zhu, “Amperometric biosensor basedon immobilized acetylcholinesterase on gold nanoparticles and silk fibroin modified platinum electrode for detection of methyl paraoxon, carbofuran and phoxim”, J. Electroanal. Chem. 637(1–2), 21–27 (2009). http://dx.doi.org/10.1016/j.jelechem.2009.09.025CrossRefGoogle Scholar

Copyright information

© Shanghai Jiao Tong University (SJTU) Press 2013

Authors and Affiliations

  • Xia Sun
    • 1
  • Zhili Gong
    • 1
  • Yaoyao Cao
    • 1
  • Xiangyou Wang
    • 1
    Email author
  1. 1.College of Agriculture and Food EngineeringShandong University of TechnologyZibo, ShandongChina

Personalised recommendations