Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Nano-Micro Letters
  3. Article
Solid-State Synthesis and Effect of Temperature on Optical Properties of CuO Nanoparticles
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Temperature effect on CuO nanoparticles via facile hydrothermal approach to effective utilization of UV–visible region for photocatalytic activity

18 November 2021

E. Bruno, M. Haris, … M. Senthilkumar

Optimization of process parameters and its effect on structure and morphology of CuO nanoparticle synthesized via the sol−gel technique

04 May 2018

Hafsa Siddiqui, Mohammad Ramzan Parra & Fozia Z. Haque

Colloidal chemical synthesis of quaternary semiconductor Cu2FeSnS4 (CFTS) nanoparticles: absorber materials for thin-film photovoltaic applications

07 January 2023

R. Deepika & P. Meena

Surfactant-mediated solvothermal synthesis of CuSbS2 nanoparticles as p-type absorber material

15 September 2018

Bincy John, G. Genifer Silvena, … A. Leo Rajesh

Effect of sulfur precursors on structural, optical, and electrical properties of Cu2SnS3 nanoparticles

25 September 2021

Mohamed S. Abdel-Latif, A. Rezk, … Amr Hessein

Microwave-assisted synthesis of nanocrystallite Cu2O particles and estimation of their microstructural parameters using Williamson–Hall method

17 November 2022

Saikat Santra, Subhamay Pramanik, … Debasis Dhak

Synthesis and photovoltaic application of ZnS:Cu (3%) nanoparticles

10 June 2019

Benjamin Ayim-Otu, Melih Kuncan, … Sabit Horoz

Investigation of impact of pH and rare earth metal dopant concentration on structural, optical and thermal properties of CuO nanoparticles

29 December 2022

Abhilasha, Neeraj Kumari & Rajni Gautam

Morphological and Optical Properties of Cu1 –xZnxO Nanoparticles

01 November 2019

N. Srinivasan

Download PDF
  • Article
  • Open Access
  • Published: 28 June 2012

Solid-State Synthesis and Effect of Temperature on Optical Properties of CuO Nanoparticles

  • C. C. Vidyasagar1,
  • Y. Arthoba Naik1,
  • T. G. Venkatesha1 &
  • …
  • R. Viswanatha1 

Nano-Micro Letters volume 4, pages 73–77 (2012)Cite this article

  • 1249 Accesses

  • 48 Citations

  • Metrics details

Abstract

Modulation of band energies through size control offers new ways to control photoresponse and photoconversion efficiency of the solar cell. The P-type semiconductor of copper oxide is an important functional material used for photovoltaic cells. CuO is attractive as a selective solar absorber since it has high solar absorbance and a low thermal emittance. The present work describes the synthesis and characterization of semiconducting CuO nanoparticles via one-step, solid-state reaction in the presence of Polyethylene glycol 400 as size controlling agent for the preparation of CuO nanoparticles at different temperatures. Solid-state mechanochemical processing, which is not only a physical size reduction process in conventional milling but also a chemical reaction, is mechanically activated at the nanoscale during grinding. The present method is a simple and efficient method of preparing nanoparticles with high yield at low cost. The structural and chemical composition of the nanoparticles were analyzed by X-ray diffraction, field emission scanning electron microscopy and energy-dispersive spectrometer, respectively. Optical properties and band gap of CuO nanoparticles were studied by UV-Vis spectroscopy. These results showed that the band gap energy decreased with increase of annealing temperature, which can be attributed to the improvement in grain size of the samples.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Sambandam Anandan, Sol. Energy Mater. Sol. Cells 91, 843 (2007). http://dx.doi.org/10.1016/j.solmat.2006.11.017

    Article  Google Scholar 

  2. A. Henglein, Chem. Rev. 89, 1861 (1989). http://dx.doi.org/10.1021/cr00098a010

    Article  Google Scholar 

  3. A. Agfeldt and M. Gratzel, Chem. Rev. 95, 49 (1995). http://dx.doi.org/10.1021/cr00033a003

    Article  Google Scholar 

  4. Hui Wang, Jin-Zhong Xu, Jun-Jie Zhu and Hong-Yuan Chen, J. Cryst. Growth 244, 88 (2002). http://dx.doi.org/10.1016/S0022-0248(02)01571-3

    Article  Google Scholar 

  5. Julia Hambrock, Ralf Becker, Alexander Birkner, Jurij Weiß and Roland A. Fischer, Chem. Commun. 68–69 (2002). http://dx.doi.org/10.1039/b108797e

  6. Bong Kyun Park, Sunho Jeong, Dongjo Kim, Jooho Moon, Soonkwon Lim and Jang Sub Kim, J. Colloid Interface Sci. 311, 417 (2007). http://dx.doi.org/10.1016/j.jcis.2007.03.039

    Article  Google Scholar 

  7. Masoud Salavati-Niasari and Fatemeh Davar, Mater. Lett. 63, 441 (2009). http://dx.doi.org/10.1016/j.matlet.2008.11.023

    Article  Google Scholar 

  8. Chih-Hung Lo and Tsing-Tshih Tsung, J. Vac. Sci. Technol. B 23, 2394 (2005). http://dx.doi.org/10.1116/1.2122787

    Article  Google Scholar 

  9. Junwu Zhu, Haiqun Chen, Hongbo Liu, Xujie Yang, Lu. Lude and Xin Wang, Mater. Sci. Eng. A 384, 172 (2004). http://dx.doi.org/10.1016/j.msea.2004.06.011

    Article  Google Scholar 

  10. Claude Carel, Mona Mouallem Bahout and Jean Gaude, Solid State Ionics 117, 47 (1999).

    Article  Google Scholar 

  11. Wang Wenzhong, Zhan Yongjie and Wang Guanghou, Chem. Commun. 727 (2001). http://dx.doi.org/10.1039/B008215P

    Google Scholar 

  12. C. C. Vidyasagar, Y. Arthoba Naik, T. G. Venkatesh and R. Viswanath, Powder Tech. 214, 337 (2011). http://dx.doi.org/10.1016/j.powtec.2011.08.025

    Article  Google Scholar 

  13. Tetsuya Kida, Takanori Oka and Masamitsu Nagano, J. Am. Ceram. Soc. 90, 107 (2007). http://dx.doi.org/10.1111/j.1551-2916.2006.01402.x

    Article  Google Scholar 

  14. Wang Dong, Z. Q. Chen, D. D. Wang, J. Gong, C. Y. Cao and Z. Tang, et al., J. Magn. Magn. Mater. 332, 3642 (2010). http://dx.doi.org/10.1016/j.jmmm.2010.07.014

    Google Scholar 

  15. Masoud Sa lavati-Niasari, Fatemeh Davar and Mehdi Mazaheri, Mater. Lett. 62, 1890 (2008).

    Article  Google Scholar 

  16. Siqingaowa, Zhaorigetu, H. Yao and Garidi, Front. Chem. China 3, 277 (2006). http://dx.doi.org/10.1007/s11458-006-0036-7

    Article  Google Scholar 

  17. Fan Zhang and Junling Yang, Int. J. Chem. Kinet. 1, 18 (2009).

    Google Scholar 

  18. Z. C. Michael Hu, T. Michael Harris and H. Charles Byers, J. Colloid Interface Sci. 198, 87 (1998). http://dx.doi.org/10.1006/jcis.1997.5290

    Article  Google Scholar 

  19. T. Prem Kumar, S. Saravanakumar and K. Sankaranarayanan, Appl. Surf. Sci. 257, 1923 (2011). http://dx.doi.org/10.1016/j.apsusc.2010.09.027

    Article  Google Scholar 

  20. J. C. Fan and Z. Xie, Mater. Sci. Eng. B 150, 61 (2008). http://dx.doi.org/10.1016/j.mseb.2008.02.014

    Article  Google Scholar 

  21. T. H. Mahato, Beer Singh, A. K. Srivastava, G. K. Prasad, A. R. Srivastava, K. Ganesan and R. Vijayaraghavan, J. Hazard. Mater. 192, 1890 (2011). http://dx.doi.org/10.1016/j.jhazmat.2011.06.078

    Article  Google Scholar 

  22. Majid Ebrahimizadeh Abrishami, Seyed Mohammad Hosseini and Ahmad Kompany, J. App. Sci. 11, 1411 (2011). http://dx.doi.org/10.3923/jas.2011.1411.1415

    Article  Google Scholar 

  23. Mehta, S. K. & Chaudhary, Savita. Sci. Topics Retrieved, January 20 (2012).

  24. Chang-Woo Kwon, Tae-Sik Yoon, Sung-Soo Yim, Sang-Hyun Park and Ki-Bum Kim, J. Nanopart. Res. 11, 831 (2009). http://dx.doi.org/10.1007/s11051-008-9451-7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Chemistry, School of Chemical Sciences, Kuvempu University, Jnanasahyadri, Shankaraghatta-577, 451, Karnataka, India

    C. C. Vidyasagar, Y. Arthoba Naik, T. G. Venkatesha & R. Viswanatha

Authors
  1. C. C. Vidyasagar
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Y. Arthoba Naik
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. T. G. Venkatesha
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. R. Viswanatha
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Y. Arthoba Naik.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Vidyasagar, C.C., Arthoba Naik, Y., Venkatesha, T.G. et al. Solid-State Synthesis and Effect of Temperature on Optical Properties of CuO Nanoparticles. Nano-Micro Lett. 4, 73–77 (2012). https://doi.org/10.1007/BF03353695

Download citation

  • Received: 22 February 2012

  • Accepted: 09 May 2012

  • Published: 28 June 2012

  • Issue Date: June 2012

  • DOI: https://doi.org/10.1007/BF03353695

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Band gap
  • CuO
  • Polyethylene glycol 400
  • Semiconductors
  • Solid-state reaction
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.