Advertisement

Nano-Micro Letters

, Volume 4, Issue 1, pp 45–51 | Cite as

Assembling ZnO Nanorods into Microflowers through a Facile Solution Strategy: Morphology Control and Cathodoluminescence Properties

  • Ying Lei
  • Fengyu Qu
  • Xiang Wu
Open Access
Article

Abstract

In this work, flowerlike ZnO micro/nanostructures assembled from nanorods are obtained through a facile hydrothermal route. The experimental results indicated that the as-synthesized ZnO microflowers have an average diameter of 2 µm, composed of nanorods of an average diameter of 200 nm and a tapered morphology. ZnO with other morphologies were also obtained by varying the reaction conditions. Systematical condition-dependent experiments were conducted to reveal the growth mechansim of the microflowers. It is suggested that the zinc source types, solution pH value, and reaction temperature, as well as reaction time are responsible for the variations of ZnO morphology. Luminescence properties of ZnO microflowers were investigated through monitoring different parts of nanorods, showing good optical quality.

Keywords

Microflowers Solution growth ZnO Cathodoluminescence 

References

  1. [1]
    H. B. Zeng, W. P. Cai, P. S. Liu, X. X. Xu, H. Zhou, C. Klingshirn and H. Kalt, ACS Nano, 1661 (2008). http://dx.doi.org/10.1021/nn800353q
  2. [2]
    Y. T. Han, X. Wu, G. Z. Shen, B. Dierre, L. H. Gong, F. Y. Qu, Y. Bando, T. Sekiguchi, F. Fabbri and D. Golberg, J. Phys. Chem. C 114, 8235 (2010). http://dx.doi.org/10.1021/jp100942mCrossRefGoogle Scholar
  3. [3]
    H. B. Zeng, G. T. Duan, Y. Li, S. K. Yang, X. X. Xu and W. P. Cai, Adv. Funct. Mater. 20, 561 (2010). http://dx.doi.org/10.1002/adfm.200901884CrossRefGoogle Scholar
  4. [4]
    Z. X. Zhang, L. F. Sun, Y. C. Zhao, Z. Liu, D. F. Liu, L. Cao, B. S. Zou, W. Y. Zhou, C. Z. Gu and S. S. Xie, Nano Lett. 8, 652 (2008). http://dx.doi.org/10.1021/nl073088oCrossRefGoogle Scholar
  5. [5]
    W. L. Cheng, M. J. Campolongo, J. J. Cha, S. J. Tan, C. C. Umbach, D. A. Muller and D. Luo, Nature Mater. 8, 519 (2009). http://dx.doi.org/10.1038/nmat2440CrossRefGoogle Scholar
  6. [6]
    C. W. Cheng, B. Liu, H. Y. Yang, W. W. Zhou, L. Sun, R. Chen, S. F. Yu, J. X. Zhang, H. Gong, H. D. Sun and H. J. Fan, ACSNano 3, 3069 (2010). http://dx.doi.org/10.1021/nn900848xGoogle Scholar
  7. [7]
    K. A. Dick, K. Deppert, M. W. Larsson, T. Martensson, W. Seifert, L. R. Wallenberg and L. Samuelson, Nature Mater. 3, 380 (2004). http://dx.doi.org/10.1038/nmat1133CrossRefGoogle Scholar
  8. [8]
    Y. H. Ni, S. Yang, J. M. Hong, L. Zhang, W. L. Wu and Z. S. Yang, J. Phys. Chem. C 112, 8200 (2008). http://dx.doi.org/10.1021/jp711539uCrossRefGoogle Scholar
  9. [9]
    L. L. Zhao, X. H. Ji, X. J. Sun, J. Li, W. S. Yang and X. G. Peng, J. Phys. Chem. C 113, 16645 (2009). http://dx.doi.org/10.1021/jp9058406CrossRefGoogle Scholar
  10. [10]
    X. J. Dai, Y. S. Luo, S. Y. Fu, W. Q. Chen and Y. Lu, Solid State Sci. 12, 637 (2010). http://dx.doi.org/10.1016/j.solidstatesciences.2010.01.024CrossRefGoogle Scholar
  11. [11]
    G. Z. Shen, D. Chen, K. B. Tang, F. Q. Li and Y. T. Qian, Chem. Phys. Lett. 370, 334 (2003). http://dx.doi.org/10.1016/S0009-2614(03)00131-3CrossRefGoogle Scholar
  12. [12]
    X. Wu, F. Y. Qu, G. Z. Shen and W. Cai, J. Alloys. Compd. 482, L32 (2009). http://dx.doi.org/10.1016/j.jallcom.2009.04.070CrossRefGoogle Scholar
  13. [13]
    G. Z. Shen, P. C. Chen, Y. Bando, D. Golberg and C. W. Zhou, Chem. Mater. 20, 6779 (2008). http://dx.doi.org/10.1021/cm802042kCrossRefGoogle Scholar
  14. [14]
    X. Wu, J. H. Sui, W. Cai and F. Y. Qu, Mater. Chem. Phys. 112, 325 (2008). http://dx.doi.org/10.1016/j.matchemphys.2008.05.069CrossRefGoogle Scholar
  15. [15]
    X. Wu, P. Jiang, Y. Ding, W. Cai, S. S. Xie and Z. L. Wang, Adv. Mater. 19, 2319 (2007). http://dx.doi.org/10.1002/adma.200602698CrossRefGoogle Scholar
  16. [16]
    P. Sulcova and M. Trojan, Dyes. Pigments. 40, 83 (1999). http://dx.doi.org/10.1016/S0143-7208(98)00036-9CrossRefGoogle Scholar
  17. [17]
    H. B. Chen, X. Wu, L. H. Gong, C. Ye, F. Y. Qu and G. Z. Shen, Nanoscale Res. Lett. 5, 570 (2010). http://dx.doi.org/10.1007/s11671-009-9506-4CrossRefGoogle Scholar
  18. [18]
    G. Z. Shen, Y. Bando, B. D. Liu, D. Golberg and C. J. Lee, Adv. Funct. Mater. 16, 410 (2006). http://dx.doi.org/10.1002/adfm.200500571CrossRefGoogle Scholar
  19. [19]
    Y. H. Li, J. Gong and Y. L. Deng, Sens. Actuat. A 158, 176 (2010). http://dx.doi.org/10.1016/j.sna.2009.12.030CrossRefGoogle Scholar
  20. [20]
    A. O. Gamer, E. Leibold and B. V. Ravenzwaay, Toxicol. in Vitro 20, 301 (2006). http://dx.doi.org/10.1016/j.tiv.2005.08.008CrossRefGoogle Scholar
  21. [21]
    M. P. Lu, J. H. Song, M.Y. Lu, M. T. Chen, Y. F. Gao, L. J. Chen and Z. L. Wang, Nano Lett. 9, 1223 (2009). http://dx.doi.org/10.1021/nl900115yCrossRefGoogle Scholar
  22. [22]
    Z. L. Wang and J. H. Song, Science 312, 242 (2006). http://dx.doi.org/10.1126/science.1124005CrossRefGoogle Scholar
  23. [23]
    X. D. Wang, J. H. Song, J. Liu and Z. L. Wang, Science 31, 102 (2007). http://dx.doi.org/10.1126/science.1139366CrossRefGoogle Scholar
  24. [24]
    X. Wu, P. Jiang, W. Cai, X. D. Bai, P. Gao and S. S. Xie. Adv. Engn. Mater. 10, 476 (2008). http://dx.doi.org/10.1002/adem.200700320CrossRefGoogle Scholar
  25. [25]
    X. Wu, W. Cai, F. Y. Qu, Chin. Phys. B 18, 1669 (2009). http://dx.doi.org/10.1088/1674-1056/18/4/065CrossRefGoogle Scholar
  26. [26]
    X. Wu, W. Cai, F.Y. Qu, Acta Phys. Sin. 58, 8044 (2009).Google Scholar
  27. [27]
    L. J. Yu, F. Y. Qu and X. Wu, J. Alloys Compd. 504, L1 (2010). http://dx.doi.org/10.1016/j.jallcom.2010.05.055CrossRefGoogle Scholar
  28. [28]
    L. J. Yu, F. Y. Qu and X. Wu, Appl. Sur. Sci. 257, 7432 (2011). http://dx.doi.org/10.1016/j.apsusc.2011.02.130CrossRefGoogle Scholar
  29. [29]
    L. H. Gong, X. Wu, C. Ye, F. Y. Qu and M. Z. An, J. Alloys Compd. 501, 375 (2010). http://dx.doi.org/10.1016/j.jallcom.2010.04.110CrossRefGoogle Scholar
  30. [30]
    J. Elias, C. C. Levy, M. Bechelany, J. Michler, G. Y. Wang, Z. Wang and L. Philippe, Adv. Mater., 22, 1607 (2010). http://dx.doi.org/10.1002/adma.200903098CrossRefGoogle Scholar
  31. [31]
    L. Li, S. S Pan, X. C. Dou, Y. G. Zhu, X. H. Huang, Y. W. Yang, G. H. Li and L. D. Zhang, J. Phys. Chem. C 118, 7288 (2007). http://dx.doi.org/10.1021/jp0711242CrossRefGoogle Scholar
  32. [32]
    V. Dhas, S. Muduli, W. Lee, S. H. Han and S. Ogale, Appl. Phys. Lett. 93, 243108 (2008). http://dx.doi.org/10.1063/1.3049131CrossRefGoogle Scholar
  33. [33]
    Z. Fang, K. B. Tang, G. Z. Shen, D. Chen, R Kong and S. J. Lei, Mater. Lett. 60, 2530 (2006). http://dx.doi.org/10.1016/j.matlet.2006.01.034CrossRefGoogle Scholar
  34. [34]
    K. Prabakar, M. K. Son, W.Y. Kim and H. Kim, Mater. Chem. Phys. 125, 12 (2011). http://dx.doi.org/10.1016/j.matchemphys.2010.09.028CrossRefGoogle Scholar
  35. [35]
    C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong and J. X. Wang, Appl. Phys. Lett. 90, 263501 (2007). http://dx.doi.org/10.1063/1.2751588CrossRefGoogle Scholar
  36. [36]
    Y. J. Kim, J. K. Yoo, B. H. Kwon, Y. J. Hong, C. H. Lee and G. C. Yi, Nanotechnology 19, 315202 (2008). http://dx.doi.org/10.1088/0957-4484/19/31/315202CrossRefGoogle Scholar
  37. [37]
    J. Zhang, L. D. Sun, J. L. Yin, H. L. Su, C. S. Liao and Yan, Chem. Mater., 4172 (2002). http://dx.doi.org/10.1021/cm020077h
  38. [38]
    Y. J. Gao, W. C. Zhang, X. L. Wu, G. S. Huang, L. L. Xu, J. C. Shen, G. G. Siu and P. K. Chu, Appl. Surf. Sci. 255, 1982 (2008). http://dx.doi.org/10.1016/j.apsusc.2008.06.137CrossRefGoogle Scholar
  39. [39]
    M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber and P. Yang, Adv. Mater. 13, 113 (2001). http://dx.doi.org/10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-HCrossRefGoogle Scholar
  40. [40]
    G. Z. Shen, Y. Bando, B. D. Liu, D. Golberg and C. J. Lee, Adv. Fuct. Mater. 16, (2006). http://dx.doi.org/10.1002/adfm.200500571
  41. [41]
    A. Umar and Y. B. Hahn, Appl. Phys. Lett. 88, 173120 (2006). http://dx.doi.org/10.1063/1.2200472CrossRefGoogle Scholar
  42. [42]
    K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt and B. E. Gnade, J. Appl. Phys. 79, 7983 (1996). http://dx.doi.org/10.1063/1.362349CrossRefGoogle Scholar
  43. [43]
    B. X. Li, Z. X. Fu and Y. B. Jia, Appl. Phys. Lett. 79, 943 (2001). http://dx.doi.org/10.1063/1.1394173CrossRefGoogle Scholar

Copyright information

© Shanghai Jiao Tong University (SJTU) Press 2012

Authors and Affiliations

  1. 1.Key Laboratory of Semiconductor Nanocomposite Materials, Ministry of Education and College of Chemistry and Chemical EngineeringHarbin Normal UniversityHarbinP. R. China

Personalised recommendations