Nano-Micro Letters

, Volume 3, Issue 1, pp 20–24 | Cite as

Synthesis and Photocatalytic Activity of Fe-doped TiO2 Supported on Hollow Glass Microbeads

  • Wenyan Zhao
  • Wuyou Fu
  • Haibin Yang
  • Chuanjin Tian
  • Minghui Li
  • Juan Ding
  • Wei Zhang
  • Xiaoming Zhou
  • Hui Zhao
  • Yixing Li
Open Access
Article

Abstract

In this paper, Fe-doped TiO2 photocatalyst supported on hollow glass microbeads (Fe-TiO2/beads) is prepared by dip-coating method, which uses hollow glass microbeads as the carriers and tetrabutylorthotitanate [Ti(OC4H9)4] as the raw material. The phase structure, ingredient, morphologies, particle size and shell thickness of the products are characterized by X-ray powder diffraction (XRD), energy-dispersive spectroscopy (EDS) and field emission scanning electron microscope (FESEM). The feasibility of photocatylic degradation of Rhodamine B (RhB) under illumination of UV-vis light is studied. The results show that the core-shell structure catalyst is composed of Fe-doped anatase TiO2 and hollow glass microbeads, and the catalytic activity of the TiO2 is markedly enhanced by Fe ion doping. The optimum concentration of Fe ion is 0.1% (molecular fraction) in the precursor and the photocatalytic activity can be increased to 98% compared with that of the undoped one. The presence of ferrum elements neither influences the transformation of anatase to rutile, nor creates new crystal phases. The possible mechanism of photocatalytic oxidation is also discussed.

Keywords

TiO2 Sol-gel method Semiconductor Photocatalytic activity Hollow glass microbeads 

References

  1. [1]
    M. R. Hoffmann, S. T. Martin, W. Choi and D. W. Bahnemann, Chem. Rev. 95, 69 (1995). http://dx.doi.org/10.1021/cr00033a004CrossRefGoogle Scholar
  2. [2]
    B. Sun, A. V. Vorontsov and P. G. Smirniotis, Langmuir 19, 3151 (2003). http://dx.doi.org/10.1021/la0264670CrossRefGoogle Scholar
  3. [3]
    A. K. Axelsson and L. J. Dunne, J. Photochem. Photobiol. A: Chem. 144, 205 (2001). http://dx.doi.org/10.1016/S1010-6030(01)00536-6CrossRefGoogle Scholar
  4. [4]
    J. Yu, J. C. Yu, M. K. P. Leung, W. Ho, B. Cheng, X. Zhao and J. Zhao, J. Catal. 217, 69 (2007).Google Scholar
  5. [5]
    N. Q. Wu, J. Wang, D. N. Tafen, H. Wang and J. G. Zheng, J. Am. Chem. Soc. 132, 6679 (2010). http://dx.doi.org/10.1021/ja909456fCrossRefGoogle Scholar
  6. [6]
    A. Mills, A. Lepre, N. Elliott, S. Bhopal, I. P. Parkin and S. A. O’Neill, J. Photochem. Photobiol. A 160, 213 (2003). http://dx.doi.org/10.1016/S1010-6030(03)00205-3CrossRefGoogle Scholar
  7. [7]
    H. J. Liu, G. G. Liu and X. Y. Shi, Colloids and Surfaces A: Physicochem. Eng. Aspects 363, 35 (2010). http://dx.doi.org/10.1016/j.colsurfa.2010.04.010CrossRefGoogle Scholar
  8. [8]
    R. Erwin, J. P. Daniel and C. Christine, J. Am. Chem. Soc. 131, 18457 (2009). http://dx.doi.org/10.1021/ja907923rCrossRefGoogle Scholar
  9. [9]
    J. G. Yu, J. Yu and J. Zhao, Appl. Catal. B: Environ. 36, 31 (2002). http://dx.doi.org/10.1016/S0926-3373(01)00277-6CrossRefGoogle Scholar
  10. [10]
    C. Natalia, S. Fernando and E. García, J. Phys. Chem. C 112, 1094 (2008). http://dx.doi.org/10.1021/jp0769781CrossRefGoogle Scholar
  11. [11]
    M. Anpo, M. Takeuchi, K. Ikeue and S. Dohshi, Curr. Opin. Solid State Mater. Sci. 6, 381 (2002). http://dx.doi.org/10.1016/S1359-0286(02)00107-9CrossRefGoogle Scholar
  12. [12]
    H. Kisch, L. Zang, C. Lange, W. F. Maier, C. Antonius and D. Meissner, Angew. Chem. Int. Ed. 37, 3034 (1998). http://dx.doi.org/10.1002/(SICI)1521-3773(19981116)37:21$<$3034::AID-ANIE3034$>$3.0.CO;2-2CrossRefGoogle Scholar
  13. [13]
    T. Umebayashi, T. Yamaki, H. Itoh and K. Asai, Appl. Phys. Lett. 81, 454 (2002). http://dx.doi.org/10.1063/1.1493647CrossRefGoogle Scholar
  14. [14]
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science 293, 269 (2001). http://dx.doi.org/10.1126/science.1061051CrossRefGoogle Scholar
  15. [15]
    Y. Yang, X. J. Li, J. T. Chen, L. Y. Wang, J. Photochem. Photobiol. A: Chem. 163, 517 (2004). http://dx.doi.org/10.1016/j.jphotochem.2004.02.008CrossRefGoogle Scholar
  16. [16]
    B. Sun, E. P. Reddy and P. G. Smirniotis, Appl. Catal. B: Environ. 57, 139 (2005). http://dx.doi.org/10.1016/j.apcatb.2004.10.016CrossRefGoogle Scholar
  17. [17]
    E. V. Alexei, F. Yutaka, X. T. Zhang, M. Jin, M. Taketoshi and F. Akira, J. Phys. Chem. B 109, 24441 (2005). http://dx.doi.org/10.1021/jp055090eCrossRefGoogle Scholar
  18. [18]
    S. F. Chen and G. Y. Cao, Desalination 194, 127 (2006). http://dx.doi.org/10.1016/j.desal.2005.11.006CrossRefGoogle Scholar
  19. [19]
    C. Y. Wang, C. Bottcher, D. W. Bahnemann and J. K. Dohrmann, J. Mater. Chem. 13, 2322 (2003). http://dx.doi.org/10.1039/b303716aCrossRefGoogle Scholar
  20. [20]
    P. Kopf, E. Gilbert and S. H. Eberle, J. Photochem. Photobiol. A: Chem. 136, 163 (2000). http://dx.doi.org/10.1016/S1010-6030(00)00331-2CrossRefGoogle Scholar
  21. [21]
    A. Sclafani, L. Palmisano and E. J. Davi, Photochem. Photobiol. A: Chem. 56, 113 (1991).CrossRefGoogle Scholar
  22. [22]
    Y. M. Xu and H. Q. Lu, J. Photochem. Photobiol. A: Chem. 136, 73 (2000). http://dx.doi.org/10.1016/S1010-6030(00)00310-5CrossRefGoogle Scholar

Copyright information

© Shanghai Jiao Tong University (SJTU) Press 2011

Authors and Affiliations

  • Wenyan Zhao
    • 1
  • Wuyou Fu
    • 1
  • Haibin Yang
    • 1
  • Chuanjin Tian
    • 2
  • Minghui Li
    • 1
  • Juan Ding
    • 1
  • Wei Zhang
    • 1
  • Xiaoming Zhou
    • 1
  • Hui Zhao
    • 1
  • Yixing Li
    • 1
  1. 1.State Key Laboratory of Superhard MaterialsJilin UniversityChangchunP. R. China
  2. 2.Institute of Atomic and Molecular PhysicsJilin UniversityChangchunP. R. China

Personalised recommendations