Skip to main content

Extracellular synthesis of silver nanoparticles using dried leaves of pongamia pinnata (L) pierre

Abstract

Extract of oven dried leaves of Pongamia pinnata (L) Pierre was used for the synthesis of silver nanoparticles. Stable and crystalline silver nanoparticles were formed by the treatment of aqueous solution of AgNO3 (1mM) with dried leaf extract of Pongamia pinnata (L) Pierre. UV-visible spectroscopy studies were carried out to quantify the formation of silver nanoparticles. Transmission electron microscopy, X-ray diffraction and Fourier transform infrared spectroscopy were used to characterize the silver nanoparticles. TEM image divulges that silver nanoparticles are quite polydispersed, the size ranging from 20 nm to 50 nm with an average of 38 nm. Water soluble heterocyclic compounds such as flavones were mainly responsible for the reduction and stabilization of the nanoparticles. Silver nanoparticles were effective against Escherichia coli (ATCC 8739), Staphylococcus aureus (ATCC 6538p), Pseudomonas aeruginosa (ATCC 9027) and Klebsiella pneumoniae (clinical isolate). The move towards extracellular synthesis using dried biomass appears to be cost effective, eco-friendly to the conventional methods of nanoparticles synthesis.

References

  1. D. Bhattacharya and R. K. Gupta, Crit. Rev. Biotechnol. 25, 199 (2005). doi:10.1080/07388550500361994.

    Article  Google Scholar 

  2. K. Prasad, K. J. Anal and A. R. Kulkarni, Nanoscale Res. Lett. 2, 248 (2007). doi:10.1007/s11671-007-9060-x.

    Article  Google Scholar 

  3. P. Mukherjee, S. Senapat, D. Mandal, A. Ahmad, M. I. Khan, R. Kumar and M. Sastry, Angew. Chem., Int. Ed. Engl. 40, 3585 (2001a). doi:10.1002/1521-3773(20011001)40:19<3585::AID-ANIE3585>3.0.CO;2-K.

    Article  Google Scholar 

  4. G. Singaravelu, J. S. Arockiamary, V. Ganesh Kumar and K. Govindaraju, Colloids Surf. B. Biointerf. 57, 97 (2007). doi:10.1016/j.colsurfb.2007.01.010.

    Article  Google Scholar 

  5. D. Pum and U. B. Sleytr, Trends Biotechnol. 17, 8 (1999). doi:10.1016/S0167-7799(98)01221-9.

    Article  Google Scholar 

  6. T. Klaus, R. Joerger, E. Olsson and C. G. Granqvist, Trends Biotechnol. 19, 15 (2001). doi:10.1016/S0167-7799(00)01514-6.

    Article  Google Scholar 

  7. R. Joerger, T. Klau and C. G. Granqvist, Adv. Mater. 12, 407 (2000). doi:10.1002/(SICI)1521-4095(200003)12:6<407::AID-ADMA407>3.0.CO;2-O

    Article  Google Scholar 

  8. B. Nair and T. Pradeep, Cryst. Growth Des. 2, 293 (2002). doi:10.1021/cg0255164.

    Article  Google Scholar 

  9. D. Mandal, M. E. Bolander, D. Mukhopadhyay, G. Sarkar and P. Mukherjee, Appl. Microbiol. Biotechnol. 69, 485 (2006). doi:10.1007/s00253-005-0179-3.

    Article  Google Scholar 

  10. P. Mukherjee, M. Roy, B. P. Mandal, G. K. Dey, P. K. Mukherjee, J. Ghatak, A. K. Tyagi and S. P. Kale, Nanotechnology 19 075103 (2008).

    Article  Google Scholar 

  11. A. Ingle, A. Gade, S. Pierrat, C. Sönnichsen and M. Rai, Curr. Nanosci. 4, 141 (2008). doi:10.2174/157341308784340804.

    Article  Google Scholar 

  12. K. Bhainsa and S. D’Souza, Colloid Surf. B 47, 160 (2006).

    Article  Google Scholar 

  13. S. Shiv Shankar, A. Ahmad and M. Sastry, Biotechnol. Prog. 19, 1627 (2003). doi:10.1021/bp034070w.

    Article  Google Scholar 

  14. S. Shiv Shankar, A. Rai, A. Ahmad and M. Sastry, J. Colloid Interf. Sci. 275, 496 (2004).

    Article  Google Scholar 

  15. S. Shiv Shankar, A. Rai, A. Ahmad and M. Sastry, Chem. Mater. 17, 566 (2005). doi:10.1021/cm048292g.

    Article  Google Scholar 

  16. B. Ankamwar, M. Chaudhary and M. Sastry, Synth. React. Inorg. Metal-Org. Nano. Metal Chem. 35, 19 (2005).

    Article  Google Scholar 

  17. S. C. Prathap, M. Chaudhary, R. Pasricha, A. Ahmad and M. Sastry, Biotechnol. Prog. 22, 577 (2006). doi:10.1021/bp0501423.

    Article  Google Scholar 

  18. R. W. Raut, J. R. Lakkakula, N. S. Kolekar, V. D. Mendhulkar and S. B. Kashid, Curr. Nanaosci. 5, 117 (2009). doi:10.2174/157341309787314674.

    Article  Google Scholar 

  19. E. Rodrigues, S. Tilvi and C. G. Naik, J. Exp. Mar. Biol. Ecol. 309, 121 (2004). doi:10.1016/j.jembe.2004.03.010.

    Article  Google Scholar 

  20. T. J. Beveridge and R. G. E. Murray, J. Bacteriol. 141, 876 (1980).

    Google Scholar 

  21. T. J. Beveridge, M. N. Hughes, H. Lee, K. T. Leung, R. K. Poole, I. Savvaidis, S. Silver and J. T. Trevors, Adv. Microb. Physiol. 38, 178 (1997).

    Google Scholar 

  22. Y. Xia and N. J. Halas, Mrs. Bull. 30, 338 (2005).

    Article  Google Scholar 

  23. G. Mie, Ann. D. Physik. 25, 377 (1908). doi:10.1002/andp.19083300302.

    Article  Google Scholar 

  24. N. Vigneshwaran, N. M. Ashtaputre, P. V. Varadarajan, R. P. Nachane, K. M. Paralikar and R. H. Balasubramanya, Mater. Lett. 61, 1413 (2007). doi:10.1016/j.matlet. 2006.07.042.

    Article  Google Scholar 

  25. J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao, N. He, J. Hong and C. Chen, Nanotechnology 18, 1 (2007).

    Google Scholar 

  26. H. Yin, S. Zhang, J. Wu, H. Nan, L. Long, J. Yang and Q. Li, Molecules 11, 786 (2006). doi:10.3390/11100786.

    Article  Google Scholar 

  27. H. Yin, S. Zhang and J. Wu, Z. Naturforsch 60b, 356 (2005).

    Google Scholar 

  28. Y. Xiong, I. Washio, J. Chen, H. Cai, Z. Y. Li and Y. Xia, Langmuir 22, 8563 (2006). doi:10.1021/la061323x.

    Article  Google Scholar 

  29. A. B. Lansdown, J. Wound Care 11, 125 (2002a).

    Article  Google Scholar 

  30. C. L. Fox Jr., Arch. Surg. 96, 184 (1968).

    Article  Google Scholar 

  31. T. Hamouda, A. Myc, B. Donovan, A. Shih, J. D. Reuter and J. R. Baker Jr, Microbiol. Res. 156, 1 (2000). doi:10.1078/0944-5013-00069.

    Article  Google Scholar 

  32. P. Dibrov, J. Dzioba, K. K. Gosink and C. C. Hase, Antimicrob Agents Chemother. 46, 2668 (2002). doi:10.1128/AAC.46.8.2668-2670.2002.

    Article  Google Scholar 

  33. I. Dragieva, S. Stoeva, P. Stoimenov, E. Pavlikianov and K. Klabunde, Nanostruct. Mater. 12, 267 (1999). doi:10.1016/S0965-9773(99)00114-2.

    Article  Google Scholar 

  34. I. Sondi and B. Salopek-Sondi, J. Colloid Interf. Sci. 275, 177 (2004). doi:10.1016/j.jcis.2004.02.012.

    Article  Google Scholar 

  35. N. A. Amro, L. P. Kotra, K. Wadu-Mesthrige, A. Bulychev, S. Mobashery and G. Liu, Langmuir 16, 2789 (2000). doi:10.1021/la991013x.

    Article  Google Scholar 

  36. J. S. Kim, E. Kuk, K. N. Yu, J. H. Kim, S. J. Park, H. J. Lee, S. H. Kim, Y. K. Park, Y. H. Park, C. Y. Hwang, Y. K. Kim, Y. S. Lee, D. H. Jeong and M. H. Cho, Nanomedicine: Nanotechnol Biol. Med. 3, 95 (2007). doi:10.1016/j.nano.2006.12.001.

    Article  Google Scholar 

  37. H. J. Lee, S. Y. Yeo and S. H. Jeong, J. Mater. Sci. 38, 2199 (2003). doi:10.1023/A:1023736416361.

    Article  Google Scholar 

  38. S. Shrivastava, T. Bera, A. Roy, G. Singh, P. Ramachandrarao and D. Dash, Nanotechnology 18, 225103 (2007). doi:10.1088/0957-4484/18/22/225103.

    Article  Google Scholar 

  39. L. Chun-Nam, H. Chi-Ming, C. Rong, He. Qing-Yu, Y. Wing-Yiu, S. Hongzhe, T. Paul Kwong-Hang, C. Jen-Fu and C. Chi-Ming, J. Proteome Res. 5, 916 (2006).s

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh W. Raut.

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Cite this article

Raut, R.W., Kolekar, N.S., Lakkakula, J.R. et al. Extracellular synthesis of silver nanoparticles using dried leaves of pongamia pinnata (L) pierre. Nano-Micro Lett. 2, 106–113 (2010). https://doi.org/10.1007/BF03353627

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03353627

Keywords

  • Extracellular synthesis
  • Silver nanoparticle
  • Pongamia pinnata
  • Antibacterial