Skip to main content
Log in

The role of protein kinase C isoforms in insulin action

  • Review Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Insulin action on target tissues is mediated by specific tyrosine kinase receptors. Upon ligand binding insulin receptors autophosphorylate and phosphorylate intracellular substrates on tyrosine residues. These early events of insulin action are followed by the activation of a number of enzymes, including protein kinase C (PKC). At least 14 PKC isoforms have been identified and cloned to date. PKCs appear to play dual roles in insulin signaling. For instance, they are involved in transduction of specific insulin signals but also contribute to the generation of insulin resistance. In this article, we will analyze the experimental evidence addressing the mechanism by which insulin might activate individual PKC isoforms as well as the role of single PKCs in insulin-induced bioeffects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Virkamaki A., Ueki K., Kahn. C.R. Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J. Clin. Invest. 1999, 103: 931–943.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. White M.F. The insulin signalling system and the IRS proteins. Diabetologia 1997, 40 (Suppl. 2): S2–S17.

    Article  CAS  PubMed  Google Scholar 

  3. Farese R.V., Standaert M.L., Arnold T., Yu B., Ishizuka T., Hoffman J., Vila M., Cooper D.R. The role of protein kinase C in insulin action. Cell Signal. 1992, 4: 133–143.

    Article  CAS  PubMed  Google Scholar 

  4. Mellor H., Parker P.J. The extended protein kinase C superfamily. Biochem. J. 1998, 332: 281–292.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Newton A.C. Regulation of protein kinase C. Curr. Opin. Cell Biol. 1997, 9: 161–167.

    Article  CAS  PubMed  Google Scholar 

  6. Jaken S. Protein kinase C isozymes and substrates. Curr. Opin. Cell Biol. 1996, 8: 168–173.

    Article  CAS  PubMed  Google Scholar 

  7. Nakanishi H., Brewer K.A., Exton J.H. Activation of the zeta isozyme of protein kinase C by phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 1993, 268: 13–16.

    CAS  PubMed  Google Scholar 

  8. Blackshear P.J. The role (or lack thereof) of protein kinase C in insulin action. In: Draznin B., LeRoith D. (Eds.) Molecular biology of diabetes, Part II. Humana Press Inc., Totowa, NJ 1994, p. 229.

    Google Scholar 

  9. Formisano P., Oriente F., Fiory F., Caruso M., Miele C., Maitan A., Andreozzi F., Vigliotta G., Condorelli G., Beguinot F. Insulin-activated PKCbeta bypasses Ras and stimulates MAP kinase activity and cell proliferation in muscle cells. Mol. Cell. Biol. 2000, 20: 6323–6333.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Donchenko V., Zannetti A., Baldini P.M. Insulin-stimulated hydrolysis of phosphatidylcholine by phospholipase C and phospholipase D in cultured rat hepatocytes. Biochim. Biophys. Acta 1994, 1222: 492–500.

    Article  CAS  PubMed  Google Scholar 

  11. Kayali, A. G., Eichhorn J., Haruta T., Morris A. J., Nelson J. G., Vollenweider P., Olefsky J.M., Webster N.J. Association of the insulin receptor with phospholi-pase C-gamma (PLCgamma) in 3T3-L1 adipocytes suggests a role for PLCgamma in metabolic signaling by insulin. J. Biol. Chem. 1998, 273: 13808–13818.

    Article  CAS  PubMed  Google Scholar 

  12. Seedorf K., Juhl L., Hansen L., Nielsen L., Mosthaf L. Insulin-induced activation of MAP kinase involves GRB2, SHPT2, PI3 kinase and PLC-gamma. Exp. Clin. Endocrinol. Diabetes 1995, 104 (Suppl. 2): 138.

    Google Scholar 

  13. Standaert M.L., Bandyopadhyay G., Zhou X., Galloway L., Farese R.V. Insulin stimulates phospholipase D-dependent phosphatidylcholine hydrolysis, Rho translocation, de novo phospholipid synthesis, and diacylglycerol/protein kinase C signaling in L6 myotubes. Endocrinology 1996, 137: 3014–3020.

    CAS  PubMed  Google Scholar 

  14. Le Good J.A., Ziegler W.H., Parekh D.B., Alessi D.R., Cohen P., Parker P.J. Protein kinase C isotypes controlled by phospho-inositide 3-kinase through the protein kinase PDK1. Science 1998, 281: 2042–2045.

    Article  PubMed  Google Scholar 

  15. Dong L.Q., Landa L.R., Wick M.J., Zhu L., Mukai H., Ono Y., Liu F. Phosphorylation of protein kinase N by phosphoinositide-dependent protein kinase-1 mediates insulin signals to the actin cytoskeleton. Proc. Natl. Acad. Sci USA 2000, 97: 5089–5094.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Standaert, M.L., Galloway L., Karnam P., Bandyo-padhyay G., Moscat J., Farese R.V. Protein kinase C-zeta as a downstream effector of phosphatidylinositol 3-kinase during insulin stimulation in rat adipocytes. Potential role in glucose transport. J. Biol. Chem. 1997, 272: 30075–30082.

    Article  CAS  PubMed  Google Scholar 

  17. Seedorf K., Shearman M., Ullrich A. Rapid and long-term effects on protein kinase C on receptor tyrosine kinase phosphorylation and degradation. J. Biol. Chem. 1995, 270: 18953–18960.

    Article  CAS  PubMed  Google Scholar 

  18. Formisano P., Oriente F., Miele C., Caruso M., Auricchio R., Vigliotta G., Condorelli G., Beguinot F. NIH3T3 fibroblasts, insulin receptor interaction with specific protein kinase isoforms controls receptor in-tracellular routing. J. Biol. Chem. 1998, 273: 13197–13202.

    Article  CAS  PubMed  Google Scholar 

  19. Liu F., Roth R.A. Insulin-stimulated tyrosine phosphorylation of protein kinase C alpha: evidence for direct interaction of the insulin receptor and protein kinase C in cells. Biochem. Biophys. Res. Commun. 1994, 200: 1570–1577.

    Article  CAS  PubMed  Google Scholar 

  20. Braiman L., Sheffi-Friedman L., Bak A., Tennenbaum T., Sampson S.R. Tyrosine phosphorylation of specific protein kinase C isoenzymes participates in insulin stimulation of glucose transport in primary cultures of rat skeletal muscle. Diabetes. 1999, 48: 1922–1929.

    Article  CAS  PubMed  Google Scholar 

  21. Braiman L., Alt A., Kuroki T., Ohba M., Bak A., Tennenbaum T., Sampson S.R. Protein kinase Cdelta mediates insulin-induced glucose transport in primary cultures of rat skeletal muscle. Mol. Endocrinol. 1999, 13: 2002–2012.

    CAS  PubMed  Google Scholar 

  22. Bossenmaier B., Mosthaf L., Mischak H., Ullrich A., Haring H.U. Protein kinase C isoforms beta 1 and beta 2 inhibit the tyrosine kinase activity of the insulin receptor. Diabetologia 1997, 40: 863–866.

    Article  CAS  PubMed  Google Scholar 

  23. Borner C., Ueffing M., Jaken S., Parker P.J., Weinstein I.B. Two closely related isoforms of protein kinase C produce reciprocal effects on the growth of rat fibrob-lasts. Possible molecular mechanisms. J. Biol. Chem. 1995, 270: 78–86.

    Article  CAS  PubMed  Google Scholar 

  24. Chalfant C.E., Ohno S., Konno Y., Fisher A.A., Bisnauth L.D., Watson J.E., Cooper D.R. A carboxy-terminal deletion mutant of protein kinase C beta II inhibits insulin-stimulated 2-deoxyglucose uptake in L6 rat skeletal muscle cells. Mol. Endocrinol. 1996, 10: 1273–1281.

    CAS  PubMed  Google Scholar 

  25. Chin J.E., Dickens M., Tavare J. M., Roth R.A. Overexpression of protein kinase C isoenzymes alpha, beta I, gamma, and epsilon in cells overexpressing the insulin receptor. Effects on receptor phosphorylation and signaling. J. Biol. Chem. 1993, 268: 6338–6347.

    CAS  PubMed  Google Scholar 

  26. Chin J.E., Liu F., Roth R.A. Activation of protein kinase C alfa inhibits insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1. Mol. Endocrinol. 1994, 8: 51–58.

    CAS  PubMed  Google Scholar 

  27. Caruso M., Miele C., Oriente F., Maitan A., Bifulco G., Andreozzi F., Condorelli G., Formisano P., Beguinot F. In L6 skeletal muscle cells, glucose induces cytoso-lic translocation of protein kinase C alfa and trans-activates the insulin receptor kinase. J. Biol. Chem. 1999, 274: 28637–28644.

    Article  CAS  PubMed  Google Scholar 

  28. Berti L., Mosthaf L., Kroder G., Kellerer M., Tippmer S., Mushack J., Seffer E., Seedorf K., Haring H. Glucose-induced translocation of protein kinase C isoforms in rat-1 fibroblasts is paralleled by inhibition of the insulin receptor tyrosine kinase. J. Biol. Chem. 1994, 269: 3381–3386.

    CAS  PubMed  Google Scholar 

  29. Koya D., King G.L. Protein kinase C activation and the development of diabetic complications. Diabetes 1998, 47: 859–866.

    Article  CAS  PubMed  Google Scholar 

  30. Ishii H., Jirousek M.R., Koya D., Takagi C., Xia P., Clermont A., Bursell S.E., Kern T.S., Ballas L.M., Heath W.F., Stramm L.E., Feener E.P., King G.L. Amelioration of vascular dysfunctions in diabetic rats by an oral PKC beta inhibitor. Science 1996, 272: 728–731.

    Article  CAS  PubMed  Google Scholar 

  31. Chalfant C.E., Mischak H., Watson J.E., Winkler B.C., Goodnight J., Farese R.V., Cooper D.R. Regulation of alternative splicing of protein kinase C beta by insulin. J. Biol. Chem. 1995, 270: 13326–32.

    Article  CAS  PubMed  Google Scholar 

  32. Standaert, M.L., Bandyopadhyay G., Galloway L., Soto J., Ono Y., Kikkawa U., Farese R.V., Leitges M. Effects of knockout of the protein kinase C beta gene on glucose transport and glucose home-ostasis. Endocrinology 1999, 140: 4470–4477.

    CAS  PubMed  Google Scholar 

  33. Nakajima K., Yamauchi K., Shigematsu S., Ikeo S., Komatsu M., Aizawa T., Hashizume K. Selective attenuation of metabolic branch of insulin receptor down-signaling by high glucose in a hepatoma cell line, HepG2 cells. J. Biol. Chem. 2000, 275: 20880–20886.

    Article  CAS  PubMed  Google Scholar 

  34. Chalfant C.E., Ciaraldi T.P., Watson J.E., Nikoulina S., Henry R.R., Cooper D.R. Protein kinase Ctheta expression is increased upon differentiation of human skeletal muscle cells: dys-regulation in type 2 diabetic patients and a possible role for protein kinase Ctheta in insulin-stimulated glycogen synthase activity. Endocrinology 2000, 141: 2773–2778.

    CAS  PubMed  Google Scholar 

  35. Itani S.I., Zhou Q., Pories W.J., MacDonald K.G., Dohm G.L. Involvement of protein kinase C in human skeletal muscle insulin resistance and obesity. Diabetes 2000, 49: 1353–1358.

    Article  CAS  PubMed  Google Scholar 

  36. Kellerer M., Mushack J., Seffer E., Mischak H., Ullrich A., Haring H.U. Protein kinase C isoforms alpha, delta and theta require insulin receptor substrate-1 to inhibit the ty-rosine kinase activity of the insulin receptor in human kidney embryonic cells (HEK 293 cells). Diabetologia 1998, 41: 833–838.

    Article  CAS  PubMed  Google Scholar 

  37. Strack V., Hennige A.M., Krutzfeldt J., Bossenmaier B., Klein H.H., Kellerer M., Lammers R., Haring H.U. Serine residues 994 and 1023/25 are important for insulin receptor kinase inhibition by protein kinaseC isoforms beta2 and theta. Diabetologia 2000, 43: 443–449.

    Article  CAS  PubMed  Google Scholar 

  38. Griffin M.E., Marcucci M.J., Cline G.W., Bell K., Barucci N., Lee D., Goodyear L.J., Kraegen E.W., White M.F., Shulman G.I. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 1999, 48: 1270–1274.

    Article  CAS  PubMed  Google Scholar 

  39. Donnelly R., Reed M.J., Azhar S., Reaven G.M. Expression of the major isoenzyme of protein kinase-C in skeletal muscle, nPKC theta, varies with muscle type and in response to fructose-induced insulin resistance. Endocrinology 1994, 135: 2369–2374.

    CAS  PubMed  Google Scholar 

  40. Bandyopadhyay G., Standaert M.L., Galloway L., Moscat J., Farese R.V. Evidence for involvement of protein kinase C (PKC)-zeta and noninvolvement of diacylglycerol-sensitive PKCs in insulin-stimulated glucose transport in L6 myotubes. Endocrinology 1997, 138: 4721–4731.

    CAS  PubMed  Google Scholar 

  41. Kotani K., Ogawa W., Matsumoto M., Kitamura T., Sakaue H., Hino Y., Miyake K., Sano W., Akimoto K., Ohno S., Kasuga M. Requirement of atypical protein kinase clambda for insulin stimulation of glucose uptake but not for Akt activation in 3T3-L1 adipocytes. Mol. Cell Biol. 1998, 18: 6971–6982.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Uberall F., Hellbert K., Kampfer S., Maly K., Villunger A., Spitaler M., Mwanjewe J., Baier-Bitterlich G., Baier G., Grunicke H.H. Evidence that atypical protein kinase C-lambda and atypical protein kinase C-zeta participate in Ras-me-diated reorganization of the F-actin cytoskeleton. J. Cell Biol. 1999, 144: 413–425.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Bandyopadhyay G., Standaert M.L., Kikkawa U., Ono Y., Moscat J., Farese R.V. Effects of transiently expressed atypical (zeta, lambda), conventional (alpha, beta) and novel (delta, epsilon) protein kinase C isoforms on insulin-stimulated translocation of epitope-tagged GLUT4 glucose transporters in rat adipocytes: specific interchangeable effects of protein kinases C-zeta and C-lambda. Biochem J. 1999, 337: 461–470.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Standaert M.L., Bandyopadhyay G., Perez L., Price D., Galloway L., Poklepovic A., Sajan M.P., Cenni V., Sirri A., Moscat J., Toker A., Farese R.V. Insulin activates protein kinases C-zeta and C-lambda by an autophosphorylation-dependent mechanism and stimulates their translocation to GLUT4 vesicles and other membrane fractions in rat adipocytes. J. Biol. Chem. 1999, 274: 25308–25316.

    Article  CAS  PubMed  Google Scholar 

  45. Kotani K., Ogawa W., Hashiramoto M., Onishi T., Ohno S., Kasuga M. Inhibition of insulin-induced glucose uptake by atypical protein kinase C isotype-specific interacting protein in 3T3-L1 adipocytes. J. Biol. Chem. 2000, 275: 26390–26395.

    Article  CAS  PubMed  Google Scholar 

  46. Ravichandran L.V., Esposito D.L., Chen J., Quon M.J. PKC-{zeta} phosphorylates IRS-1 and impairs its ability to activate PI 3-kinase in response to insulin. J. Biol. Chem. 2000, [epub ahead of print].

    Google Scholar 

  47. Mendez R., Kollmorgen G., White M.F., Rhoads R.E. Requirement of protein kinase C zeta for stimulation of protein synthesis by insulin. Mol. Cell. Biol. 1997, 17: 5184–5192.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Sauvage M., Maziere P., Fathallah H., Giraud F. Insulin stimulates NHE1 activity by sequential activation of phosphatidylinositol 3-kinase and protein kinase C zeta in human erythro-cytes. Eur. J. Biochem. 2000, 267: 955–962.

    Article  CAS  PubMed  Google Scholar 

  49. Sweeney G., Somwar R., Ramlal T., Martin-Vasallo P., Klip A. Insulin stimulation of K+ uptake in 3T3-L1 fibrob-lasts involves phosphatidylinositol 3-kinase and protein kinase C-zeta. Diabetologia 1998, 41: 1199–1204.

    Article  CAS  PubMed  Google Scholar 

  50. Sajan M.P., Standaert M.L., Bandyopadhyay G., Quon M.J., Burke T.R., Farese R.V. Protein kinase C-zeta and phosphoinositides-dependent protein kinase-1 are required for insulin-induced activation of ERK in rat adipocytes. J. Biol. Chem. 1999, 274: 30495–30500.

    Article  CAS  PubMed  Google Scholar 

  51. Balendran A., Casamayor A., Deak M., Paterson A., Gaffney P., Currie R., Downes C.P., Alessi D.R. PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2. Curr Biol. 1999, 9: 393–404.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Formisano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Formisano, P., Beguinot, F. The role of protein kinase C isoforms in insulin action. J Endocrinol Invest 24, 460–467 (2001). https://doi.org/10.1007/BF03351048

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03351048

Key-words

Navigation