Skip to main content
Log in

Thyroid follicular oncogenesis in iodine-deficient and iodine-sufficient areas: Search for alterations of the ras, met and bFGF oncogenes and of the Rb anti-oncogene

  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

To gain insights into the role of iodine deficiency in favoring thyroid tumorigenesis (particularly of the follicular histotype), 22 Sicilian patients with thyroid tumors were selected for having lived permanently in either one of two areas of different iodine availability. Eleven patients (age 46.1 ±14.6 years, mean±SD; 10 females and 1 male) were from the iodine-deficient (ID) areas of the provinces of Messina and Catania (mean urinary excretion of iodine=48.1 µg/2A hours). Thyroid tumors were follicular or Hürthle cell adenomas (no.=3), follicular carcinomas (FC, no.=4), papillary carcinomas (PC, no.=2) and anaplastic carcinomas (no.=2). Eleven patients (age 47.1±15.2 years; 10 females and 1 male) were from the metropolitan area of Messina, an area of relative iodine-sufficiency (IS) (urinary excretion of iodine=95.2 µg/24 hours). These 11 patients had serum levels of TSH that were significantly lower than the corresponding values of the 11 patients from the ID area (0.76±0.33 vs 1.80±1.22 mU/l, p=0.01) The tumors of the 11 patients from the IS area were: follicular or Hürthle cell adenomas (no.=6), Hürthle cell carcinoma (no.=1), FC (no.=2), PC (no.=2). Molecular biology studies revealed that both the normal as well as the tumor tissue of all 22 patients did not harbor any of the three classical activating mutations (codons 12, 13 and 61) in any of the three ras oncogenes. Similar negative results were obtained as far as loss of heterozygosity of the retinoblastoma (Rb) anti-oncogene is concerned. Immunohistochemistry studies were performed to investigate expression of c-met and basic fibroblast growth factor (bFGF) proto-oncogenes. Only one Hürthle cell carcinoma and the two PC from the IS group, and one FC and the two PC from the ID group stained for the c-met oncogene. Expression of c-met was greater (3+) in the four PC (concerning 70–80% of the tumor cells) than in the other two cancers (1+; <5% of the tumor cells). In the IS group, positivity for bFGF was detected in 3/6 adenomas, 1/2 FC, the Hürthle cell carcinoma and the two PC. In the ID group, positivity for bFGF was observed in 2/3 adenomas, 2/4 FC, the two PC and the two anaplastic carcinomas. The 8 positive cases from the ID group had a greater level of bFGF expression than the 7 positive cases from the IS group (intensity of staining = 2.0+ vs 1.57+). Interestingly, the greatest expression of bFGF was seen in the cases with peri-tumoral lymphocytic infiltration from either group. In the ID group correlations between (i.) pre-intervention serum TSH and intensity of tumoral staining for bFGF, (ii.) serum TSH and per cent of tumoral cells reactive with anti-bFGF and (iii.) between intensity of staining for bFGF and per cent of tumoral cells bFGF +ve were higher than in the IS group. We conclude that activating mutations of ras, loss of DNA from the Rb locus and over-expression of both c-met and bFGF are of no pathogenetic relevance in driving thyroid tumorigenesis of iodine-deficient areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belfiore A., La Rosa G.L., Padova G., Sava L., Ippolito O., Vigneri R. The frequency of cold thyroid nodules and thyroid malignancies in patients from an iodine-deficient area. Cancer 60: 3096, 1987.

    Article  PubMed  CAS  Google Scholar 

  2. Vigneri R. Studies on the goiter endemia in Sicily. J. Endocrinol. Invest. 11: 831, 1988.

    Article  PubMed  CAS  Google Scholar 

  3. Wahner H.W., Cuello C., Correa P., Uribe I.F., Gaitan E. Thyroid carcinoma in an endemic goiter area. Am. J. Med. 40: 58, 1966.

    Article  PubMed  CAS  Google Scholar 

  4. Fagin J. Molecular defects in thyroid gland neoplasia. J. Clin. Endocrinol. Metab. 75: 1398, 1992.

    PubMed  CAS  Google Scholar 

  5. Shi Y., Zou M., Schmidt H., Juhasz F., Stensky V., Robb D., Farid N.R. High rates of ras codon 61 mutation in thyroid tumors in an iodine deficient area. Cancer Res. 51: 2690, 1991.

    PubMed  CAS  Google Scholar 

  6. Zou M.J., Shi Y.F., Farid N.R. Retinoblastoma gene defects are central to thyroid carcinogenesis. 75th Annual Meeting of the Endocrine Society, Las Vegas, USA, June 9–12, 1993 (Abstract 162).

  7. Di Renzo M.F., Olivero M., Serini G., Orlandi F., Pilotti S., Belfiore A., Costantino A., Vigneri R., Angeli A., Pierotti M.A., Comoglio P.M. Overexpression of the c-met/HGF receptor in human thyroid carcinomas derived from the follicular epithelium. J. Endocrinol. Invest. 18: 134, 1995.

    Article  PubMed  Google Scholar 

  8. Eggo M.C., Hopkins J.M., Franklyn J.A., Johnson G.D., Scott D., Sanders A., Sheppard M.C. Expression of Fibroblast Growth Factors in thyroid cancer. J. Clin. Endocrinol. Metab. 80: 1006, 1995.

    PubMed  CAS  Google Scholar 

  9. Vermiglio F., Finocchiaro M.D., Lo Presti V.P., La Torre N., Nucifora M., Trirnarchi F. Partial beneficial effects of the so-called “silent iodine prophylaxis” on iodine deficiency disorders (IDD) in Northeastern Sicily endemia. J. Endocrinol. Invest. 12: 123, 1989.

    Article  PubMed  CAS  Google Scholar 

  10. Vermiglio F., Lo Presti V.P., Scaffidi Argentina G., Finocchiaro M.D., Gullo D., Squatrito S., Trimarchi F. Maternal hypothyroxinaemia during the first half of gestation in an iodine deficient area with endemic cretinism and related disorders. Clin. Endocrinol. (Oxf.) 42: 409, 1995.

    Article  CAS  Google Scholar 

  11. Li Volsi V. Surgical Pathology of the thyroid. W.B. Saunders, Philadelphia, 1990.

    Google Scholar 

  12. Jackson D.P., Lewis F.A., Taylor G.R., Boylston A.W., Quirke P. Tissue extraction of DNA and RNA and analysis by the polymerase chain reaction. J. Clin. Pathol. 43: 499, 1990.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Jiang W., Kahn S.M., Guillem J.G., Lu S.H., Weinstein I.B. Rapid detection of ras oncogenes in human tumors: applications to colon, esophageal, and gastric cancer. Oncogene 4: 923, 1989.

    PubMed  CAS  Google Scholar 

  14. Orita M, Suzuki Y, Sekiya T, Hayashi K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5: 874, 1989.

    Article  PubMed  CAS  Google Scholar 

  15. Levesque P., Ramchurren N., Saini K., Joyce A., Libertino J., Summerhayes I.C. Screening of human bladder tumors and urine sediments for the presence of H-ras mutations. Int. J. Cancer 55: 785, 1993.

    Article  PubMed  CAS  Google Scholar 

  16. Sciacchitano S, Paliotta D.S., Nardi F., Sacchi A., Andreoli M., Pontecorvi A. PCR amplification and analysis of RAS oncogenes from thyroid cytologic smears. Diagn. Mol. Pathol. 3: 114, 1994.

    Article  PubMed  CAS  Google Scholar 

  17. Cryns V.L., Alexander J.M., Klibanski A., Arnold A. The retinoblastoma gene in human pituitary tumors. J. Clin. Endocrinol. Metab. 77: 644, 1993.

    PubMed  CAS  Google Scholar 

  18. Goretzki P.E., Lyons J., Stacy-Phipps S., Roseneau W., Demeure M., Clark O.K., McCormick F., Roher H.D., Bourne H.R. Mutational activation of RAS and GSP oncogenes in differentiated thyroid cancer and their biological implications. World J. Surg. 16: 576, 1992.

    Article  PubMed  CAS  Google Scholar 

  19. Ezzat S., Zheng L., Kolenda J., Safarian A., Freeman J.L., Asa S.L. Prevalence of activating ras mutations in morphologically characterized thyroid nodules. Thyroid 6: 409, 1996.

    Article  PubMed  CAS  Google Scholar 

  20. Oyama T., Suzuki T., Hara F., Iino Y., Ishida T., Sakamoto A., Nakajima T. N-ras mutation of thyroid tumor with special reference to the follicular type. Pathol. Int. 45: 45, 1995.

    Article  PubMed  CAS  Google Scholar 

  21. Horie H., Yokogoshi Y., Tsuyuguchi M., Saito S. Point mutations of ras and Gs alpha subunit genes in thyroid tumors. Jpn. J. Cancer Res. 86: 737, 1995.

    Article  PubMed  CAS  Google Scholar 

  22. Kaihara M., Taniyama M., Tadatomo J., Tobe T., Tomita M., Ito K., Ban Y., Katagiri T. Specific PCR amplification for N-ras mutations in neoplastic thyroid diseases. Endocr. J. 41: 301, 1994.

    Article  PubMed  CAS  Google Scholar 

  23. Hara H., Fulton N., Yashiro T., Ito K., DeGroot L.J., Kaplan E.L. N-ras mutation: an independent prognostic factor for aggressiveness of papillary thyroid carcinoma. Surgery 116: 1010, 1994.

    PubMed  CAS  Google Scholar 

  24. Salvatore D., Celetti A., Fabien N., Paulin C., Martelli M.C., Battaglia C., Califano D., Monaco C., Viglietto G., Santoro M., Fusco A. Low frequency of p53 mutations in human thyroid tumors; p53 and ras mutations in two out of fifty-six thyroid tumours. Eur. J. Endocrinol. 134: 177, 1996.

    Article  PubMed  CAS  Google Scholar 

  25. Manenti G., Pilotti S., Re F.C., Delia Porta G., Pierotti M.A. Selective activation of ras oncongenes in follicular and undifferentiated thyroid carcinomas. Eur. J. Cancer 30A: 987, 1994.

    Article  PubMed  CAS  Google Scholar 

  26. Farid N.R., Zou M.J., Shi Y.F. Molecular bases of thyroid cancer. Endocr. Rev. 15: 202, 1994.

    PubMed  CAS  Google Scholar 

  27. Hughes S.E., Hall P.A. Immunolocalization of HGF receptor 1 and its ligands in human tissues. Lab. Invest. 69: 173, 1993.

    PubMed  CAS  Google Scholar 

  28. Shingu K., Sugenoya A., Itoh N., Kato R. Expression of basic fibroblast growth factor in thyroid disorders. World J. Surg. 18: 500, 1994.

    Article  PubMed  CAS  Google Scholar 

  29. Van der Laan B.F., Freeman J.L., Asa S.L. Expression of growth factor receptors in normal and tumorous human thyroid tissues. Thyroid 5: 67, 1995.

    Article  PubMed  Google Scholar 

  30. Becks G.P., Logan A., Phillips I.D., Wang J.F., Smith C., DeSousa D., Hill D.J. Increase of basic fibroblast growth factor (FGF) and FGF receptor messenger mRNA during rat thyroid hyperplasia: temporal changes and cellular distribution. J. Endocrinol. 142: 325, 1994.

    Article  PubMed  CAS  Google Scholar 

  31. Hill D.J., Phillips I.D., Wang J.F., Becks G.P. Basic fibroblast growth factor (basic FGF) in isolated ovine thyroid follicles: thyrotropin stimulation and effects of basic FGF on DNA synthesis, iodine uptake and organification, and the release of insuline-like growth factors (IGFs) and IGF-binding proteins. Thyroid 4: 77, 1994.

    Article  PubMed  CAS  Google Scholar 

  32. Patel V.A., Hill D.J., Eggo M.C., Sheppard M.C., Becks G.P., Logan A. Changes in the immunohistochemical localization of fibroblast growth factor-2, transforming growth factor-beta 1 and thrombospondin-1 are associated with early angiogenic events in the hyperplastic rat thyroid. J. Endocrinol. 148: 485, 1996.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartolone, L., Vermiglio, F., Finocchiaro, M.D. et al. Thyroid follicular oncogenesis in iodine-deficient and iodine-sufficient areas: Search for alterations of the ras, met and bFGF oncogenes and of the Rb anti-oncogene. J Endocrinol Invest 21, 680–687 (1998). https://doi.org/10.1007/BF03350798

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03350798

Key-words

Navigation