Skip to main content
Log in

Membrane fatty acids, glutathione-peroxidase activity, and cation transport systems of erythrocytes and malondialdehyde production by platelets in Laurence Moon Barter Biedl Syndrome

  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

The fatty acid composition of erythrocyte membrane, the glutathione-peroxidase activity of erythrocytes and platelets, the production of malondialdehyde by platelets and the activity of the main systems of transmembrane cation transport have been studied in 5 members of a family, 2 of whom affected by Laurence-Moon-Barter-Biedl Syndrome. A remarkable increase of polyunsaturated fatty acids (particularly arachidonic acid) and of cholesterol/phospholipid molar ratio has been noted. This pattern of membrane lipids was associated to an increment of malondialdehyde production and an increase activity of glutathione-peroxidase. Serum retinol and a-tocopherol were in the normal range, whereas serum selenium was low in 3 out of 5 members. Moreover, the alteration of membrane lipids was associated to a decrease of the maximal velocity of Li-Na countertransport. We speculate that the enrichment of polyunsaturated fatty acids on the cell membranes may represent a condition favoring the lipoperoxidation and therefore the development of the retinitis pigmentosa characteristic feature of Laurence-Moon-Barter-Biedl Syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ledingham J.G.G. Laurence-Moon-Biedl Syndrome. In: Weatherall D.J., Ledingham J.G.G., Warrell D.A. (Eds.), Oxford textbook of medicine, ed. 2. Oxford Medical Publications, 1987, p. 24.

  2. Runge P., Calver D., Marshall J., Taylor D. Histopathology of mitochondrial cytopathy and the Laurence Moon Biedl syndrome. Br. J. Ophtalmol. 70: 782, 1986.

    Article  CAS  Google Scholar 

  3. Wolff S.P., Garner A., Dean R.T. Free radicals, lipids and protein degradation. TIBS 11: 27, 1986.

    CAS  Google Scholar 

  4. Wiley J.S., Cooper R.A. Inhibition of cation cotransport by cholesterol enrichment of human red cell membranes. Biochim. Biophys. Acta 413: 425, 1975.

    Article  PubMed  CAS  Google Scholar 

  5. Poznansky M., Kirkwood D., Solomon A.K. Modulation of red cell K transport by membrane lipids. Biochim. Biophys. Acta 330: 351, 1973.

    Article  PubMed  CAS  Google Scholar 

  6. Kroes J., Ostwald R. Erythrocyte membranes effect of increased cholesterol content on permeability. Biochim. Biophys. Acta 249: 647, 1971.

    Article  PubMed  CAS  Google Scholar 

  7. Duhm J., Behr J. Role of exogenous factors in alterations of red cell Na+− K+cotransport in essential hypertension, primary hyperaldosteronism and hyperkaliemia. Scand. J. Lab. Invest. 46(Suppl. 180): 82, 1986.

    CAS  Google Scholar 

  8. Corrocher R., Ferrari S., Bassi A., Guarini P., Bertinato L., Olivieri O., Guadagnin M.L., Ruzzenente O., Brugnara C., De Sandre. Membrane polyunsaturated fatty acids and lithiumsodium countertransport in human erythrocytes. Life Sci. 41: 1171, 1987.

    Article  PubMed  CAS  Google Scholar 

  9. Haegerty A.M., Ollerenshaw J.D., Robertson D.I., Bing R.F., Swales J.D. Influences of dietary linoleic acid on leukocyte sodium transport and blood pressure. Br. Med. J. 293: 295, 1986.

    Article  Google Scholar 

  10. Brugnara C., Kopin A.S., Bunn H.F., Tosteson D.C. Regulation of cation content and cell volume in hemoglobin C disease. J. Clin. Invest. 75: 1608, 1985.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Hara Y., Yamada J., Nakao M. Proton transport catalyzed by the sodium pump. Ouabain-sensitive ATPase activity and the phosphorylation of Na, K-ATPase in the absence of sodium ions. J. Biochem. 99: 531, 1986.

    PubMed  CAS  Google Scholar 

  12. Moolenaar W. Regulation of cytoplasmatic pH by Na+/H+ exchange. TIBS 11: 141, 1986.

    CAS  Google Scholar 

  13. Rose G., Okiander M. Improved procedure for the extraction of lipids from human erythrocytes. J. Lipid Res. 6: 428, 1965.

    PubMed  CAS  Google Scholar 

  14. Bartlett G.R. Phosphorous assay in column chromatography. J. Biol. Chem. 234: 466, 1959.

    PubMed  CAS  Google Scholar 

  15. Gunzler W.A., Kremers H., Flohe L. An improved coupled test procedure for glutathioneperoxidase (EC 1.11.1.9.) in blood. Z. Klin. Chem. Klin. Biochem. 12: 444, 1974.

    PubMed  CAS  Google Scholar 

  16. Guidi G.C., Schiavon R., Biasioli A., Perona G. The enzyme glutathione-peroxidase in arachidonic acid metabolism of human platelets. J. Lab. Clin. Med. 104: 574, 1984.

    PubMed  CAS  Google Scholar 

  17. Lowry O.H., Rosenbrough N.J., Farr A.I., Randall R.J. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193: 265, 1951.

    PubMed  CAS  Google Scholar 

  18. Smith J.B., Ingermann C.M., Silver M.J. Malondialdehyde formation as an indicator of prostaglandin production by human platelets. J. Lab. Clin. Med. 88: 167, 1976.

    PubMed  CAS  Google Scholar 

  19. Buso G.P., Colautti P., Moschini G., Hu Xusheng A., Stievano B.M. High sensitivity PIXE determination of selenium in biological samples using a preconcentration technique. Nuclear Instruments and Methods in Physics Research Section B 231: 177, 1984.

    Article  CAS  Google Scholar 

  20. Miller K.W., Lorr N.A., Yang C.S. Simultaneous determination of plasma retinol, a-to-copherol lycopene, a-carotene and b-carotene by high performance liquid chromatography. Anal. Biochem. 138: 340, 1984.

    Article  PubMed  CAS  Google Scholar 

  21. Canessa M., Bize I., Adragna N., Tosteson D.C. Cotransport of lithium and potassium in human red cells. J. Gen. Physiol. 80: 149, 1982.

    Article  PubMed  CAS  Google Scholar 

  22. Canessa M., Adragna N., Solomon H.S., Connolly T.M., Tosteson D.C. Increase of sodium-lithium countertransport in red cell of patients with essential hypertension. N. Engl. J. Med. 302: 772, 1980.

    Article  PubMed  CAS  Google Scholar 

  23. Olivieri O., Negri M., De Gironcoli M., Bassi A., Guarini P., Stanzial A.M., Grigolini L., Ferrari S., Corrocher R. Effects of dietary fish oil on malondialdehyde production and glutathione peroxidase activity in hyperlipidaemic patients. Scand. J. Clin. Lab. Invest. 48: 659, 1988.

    Article  PubMed  CAS  Google Scholar 

  24. Carmagnol F., Sinet P.M., Jerome H. Selenium dependent and non selenium dependent glutathione-peroxidase in human tissue extracts. Biochim. Biophys. Acta 759: 49, 1983.

    Article  PubMed  CAS  Google Scholar 

  25. Corrocher R., Ferrari S., de Gironcoli M., Bassi A., Olivieri O., Guarini P., Stanzial A.M., Barba A.L., Grigolini L. Effect of fish oil supplementation on erythrocyte lipid pattern, malodialdehyde production and glutathioneperoxidase activity in psoriasis. Clin. Chim. Acta 179: 121, 1989.

    Article  PubMed  CAS  Google Scholar 

  26. Canessa M. Pathophysiology of the Na exchange and Na-K-Cl cotransport in essential hypertension: new findings and hypothesis. Ann. N.Y. Acad. Sci. 488: 276, 1986.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by grants from: Ministero della Pubblica Istruzione, Assessorato alla Sanità - Veneto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corrocher, R., Guadagnin, L., de Gironcoli, M. et al. Membrane fatty acids, glutathione-peroxidase activity, and cation transport systems of erythrocytes and malondialdehyde production by platelets in Laurence Moon Barter Biedl Syndrome. J Endocrinol Invest 12, 475–481 (1989). https://doi.org/10.1007/BF03350737

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03350737

Key-words

Navigation