Skip to main content

Advertisement

Log in

Effects of verapamil and nifedipine on gliclazide-induced increase in cytosolic free Ca2+ in pancreatic islet cells

  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

The changes in cytosolic free calcium [Ca2+]i induced by the sulfonylurea gliclazide and potassium in normal rat pancreatic islet cells were measured using the fluorescent Ca2+ indicator fura-2. Both in the absence or presence of 5.6 mM glucose, gliclazide caused a rapid and sustained increase in [Ca2+]i. The phenylalkylamine verapamil reduced these increases, but the Ca2+ channel blocker was more potent in the presence than in the absence of glucose. In contrast, nifedipine, a Ca2+ channel blocker of another chemical type, reduced to a similar extent the increase in [Ca2+]i evoked by gliclazide in the absence and presence of glucose. In the absence of glucose, a rise in extracellular K+ concentration from 5 to 20 or 30 mM also induced a rapid and sustained rise in [Ca2+]i. Verapamil more markedly reduced the rise in [Ca2+]i induced by 30 mM than by 20 mM K+. It is concluded that gliclazide increases Ca2+ inflow into normal islet cells primarily, if not exclusively, by opening voltage-sensitive Ca2+ channels. The differential sensitivity toward verapamil of gliclazide-induced rise in [Ca2+]i can be explained by the use-dependent block exerted by Ca2+ channel blockers of the phenylalkylamine type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Malaisse W.J., Mahy M., Brisson G.R., Malaisse-Lagae F. The stimulus-secretion coupling of glucose-induced insulin release. VIII. Combined effects of glucose and sulfonylureas. Eur. J. Clin. Invest. 2: 85, 1972.

    Article  PubMed  CAS  Google Scholar 

  2. Hellmann B., Lenzen S., Sehlin J., Täljedal I.B. Effect of various modifiers of insulin release on the lanthanum-nondisplaceable 45Ca2+ uptake by isolated pancreatic islets. Diabetologia 13: 49, 1977.

    Article  Google Scholar 

  3. Sturgess N.C., Ashford M.L.J., Cook D.L., Hales C.N. The sulfonylurea receptor may be an ATP-sensitive potassium channel. Lancet 2: 474, 1985.

    Article  PubMed  CAS  Google Scholar 

  4. Trube G., Rorsman P., Ohno-Shosaku T. Opposite effects of tolbutamide and diazoxide on the ATP-dependent K+ channel in mouse pancreatic β-cells. Pflügers Archiv. 407: 493, 1986.

    Article  PubMed  CAS  Google Scholar 

  5. Cook D.L., Hales C.N. Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature 311: 271, 1984.

    Article  PubMed  CAS  Google Scholar 

  6. Ashcroft F.M., Harrison D.E., Ashcroft S.J.H. Glucose induces closure of single potassium channels in isolated rat pancreatic β-cells. Nature 311: 446, 1984.

    Article  Google Scholar 

  7. Henquin J.C., Meissner H.P. Opposite effects of tolbutamide and diazoxide on 86Rb fluxes and membrane potential in pancreatic B cells. Biochem. Pharmacol. 31: 1407, 1982.

    Article  PubMed  CAS  Google Scholar 

  8. Matthews E.K., Sakamoto Y. Electrical characteristics of pancreatic islet cells. J. Physiol. 246: 421, 1975.

    PubMed Central  PubMed  CAS  Google Scholar 

  9. Meissner H.P., Atwater I.J. The kinetics of electrical activity of beta cells in response to a “square wave” stimulation with glucose or glibenclamide. Horm. Metab. Res. 8: 11, 1976.

    Article  PubMed  CAS  Google Scholar 

  10. Henquin J.C. Tolbutamide stimulation and inhibition of insulin release: Studies of the underlying ionic mechanisms in isolated rat islets. Diabetologia 18: 151, 1980.

    Article  PubMed  CAS  Google Scholar 

  11. Abrahamsson H., Berggren P.O., Rorsman P. Direct measurements of increased cytoplasmic Ca2+ in mouse pancreatic β-cells following stimulation by hypoglycemic sulfonylureas. FEBS Lett. 190: 21, 1985.

    Article  PubMed  CAS  Google Scholar 

  12. Nelson T.Y., Gaines K.L., Rajan A.S., Berg M., Boyd III A.E. Increased cytosolic calcium. A signal for sulfonylurea-stimulated insulin release from beta cells. J. Biol. Chem. 262: 2608, 1987.

    PubMed  CAS  Google Scholar 

  13. Couturier E., Malaisse W.J. Insulinotropic effects of hypoglycaemic sulphonamides: The ionophoretic hypothesis. Diabetologia 19: 335, 1980.

    Article  PubMed  CAS  Google Scholar 

  14. Gylfe E., Hellman B., Sehlin J., Täljedal I.B. Interaction of sulfonylurea with the pancreatic B-cell. Experientia 40: 1126, 1984.

    Article  PubMed  CAS  Google Scholar 

  15. Lebrun P., Malaisse W.J., Herchuelz A. Modalities of gliclazide-induced Ca2+ influx into the pancreatic B-cell. Diabetes 31: 1010, 1982.

    Article  PubMed  CAS  Google Scholar 

  16. Pipeleers D.G., in’t Veld P.A., Van De Winkel M., Maes E., Schuit F.C., Gepts W. A new in vitro model for the study of pancreatic A and B cells. Endocrinology 111: 806, 1985.

    Article  Google Scholar 

  17. Gobbe P., Herchuelz A. Does glucose reduce cytosolic free Ca2+ in normal pancreatic islet cells? Res. Comm. Chem. Path. Pharmacol. 63: 231, 1989.

    CAS  Google Scholar 

  18. Grynkiewicz G., Poenie M., Tsien R.Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 260: 3440, 1985.

    PubMed  CAS  Google Scholar 

  19. Wollheim C.B., Biden T.J. Second messenger function of inositol 1, 4, 5-triphosphate. Early changes in inositol phosphates, cytosolic Ca2+, and insulin release in carbamylcholine-stimulated RINm5F cells. J. Biol. Chem. 261: 8314, 1986.

    PubMed  CAS  Google Scholar 

  20. Godfraind T., Miller R., Wibo M. Calcium antagonism and calcium entry blockade. Pharmacol. Rev. 38: 321, 1986.

    PubMed  CAS  Google Scholar 

  21. Bolton T.B. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol. Rev. 59: 606, 1979.

    PubMed  CAS  Google Scholar 

  22. Meisheri K.D., Hwang O., Van Breemen C. Evidence for two separate Ca2+ pathways in smooth muscle plasmalemma. J. Membrane Biol. 59: 19, 1981.

    Article  CAS  Google Scholar 

  23. Lee K.S., Tsien R.W. Mechanisms of calcium channel blockade by verapamil, D-600, diltiazem and nitrendipine in single dialysed heart cells. Nature 308: 790, 1983.

    Article  Google Scholar 

  24. Vasseur M., Debuyser A., Joffre M. Sensitivity of pancreatic beta cell to calcium channel blockers. An electrophysiologic study of verapamil and nifedipine. Fund. Clin. Pharmacol. 1: 95, 1987.

    Article  CAS  Google Scholar 

  25. Meissner H.P., Henquin J.C. Comparison of the effects of glucose, amino acids and sulphonamides on the membrane potential of pancreatic B cells. Excerpta Medica, International Congress Series N. 600: 353, 1982.

    Google Scholar 

  26. Atwater I., Dawson C.M., Eddiestone G.T., Rojas E. Voltage noise measurements across the pancreatic β-cell membrane: calcium channel characteristics. J. Physiol. 314: 195, 1981.

    PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gobbe, P., Herchuelz, A. Effects of verapamil and nifedipine on gliclazide-induced increase in cytosolic free Ca2+ in pancreatic islet cells. J Endocrinol Invest 12, 469–474 (1989). https://doi.org/10.1007/BF03350736

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03350736

Key-words

Navigation