Skip to main content
Log in

Effect of adrenaline on biliary excretion of triiodothyronines in rats mediated by alpha1-adrenoceptors and related to the inhibition of 5’-monodeiodination in liver

  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Biliary excretion of thyroxine (T4), 3,5,3’-triiodothyronine (T3), 3,3,5’-triiodothyronine (rT3) and diiodothyronines (3, 3’-T2, 3, 5-T2 and 3’, 5’-T2) was estimated with the aid of radioimmunoassay in 3–4 subsequent 2-h samples of bile obtained from pentobarbital anesthetized rats through the tubing inserted in bile duct. The excretion of T3 was significantly decreased during 4-h infusion of 2400 ng/kg/min adrenaline in normal rats or during 6-h infusion of the latter dose in the animals preinjected with 2 µg T4. Moreover, the excretion of rT3 was significantly increased after the infusion of 1200 and 2400 ng/kg/min adrenaline. Such increase after 1200 and 2400 ng/kg/min adrenaline was prevented by a single dose of 10 mg/kg phentolamine (alpha1–2-antagonist) and that after 2400 ng/kg/min adrenaline also by 2.5 mg/kg prazosin (alpha1-antagonist) injected at the beginning of the infusion, but not by 6 mg/kg yohimbine (alpha2-antagonist) injected every 60 min during 4-h infusion. In addition, increased rT3 excretion was found during the infusion of alpha1-agonist methoxamine (1.5 mg/kg/4 h), while no such effect of the infusion of alpha2-agonist azepexol (10 mg/kg/4 h) was observed. It may be suggested that the effect of adrenaline was mediated predominantly by alpha1-adrenoceptors and that the observed changes in biliary excretion of T3 and rT3 were related to the inhibition of 5’-monodeiodination in the liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wartofsky L., Burman K.D. Alterations in thyroid function in patients with systemic illness: the “Euthyroid sick syndrome”. Endocr. Rev. 3: 164, 1982.

    Article  CAS  PubMed  Google Scholar 

  2. Cavalieri R.R., Pitt-Rivers R. The effects of drugs on the distribution and metabolism of thyroid hormones. Pharmacol. Rev. 33: 55, 1981.

    CAS  PubMed  Google Scholar 

  3. Yamamoto M., Sakurada T., Yoshida K., Kaise K., Kaise N., Fukuzawa H., Suzuki M., Nomura T., Itagaki Y., Saito S., Yoshinaga K. Effect of Carteolol, indenolol and metoprolol on the thyroid hormone of hyperthyroid patients. Tohoku J. Exp. Med. 146: 386, 1985.

    Article  Google Scholar 

  4. Perrild H., Hansen J.M., Skovsted L., Korsgaard Christensen L. Different effects of propranolol, alprenolol, Sotalol, atenolol and metoprolol on serum T3 and serum rT3 in hyperthyroidism. Clin. Endocrinol. (Oxf.) 18: 139, 1983.

    Article  CAS  Google Scholar 

  5. Jurney T.H., Smallridge R.C., Routledge P.A., Shand D.G., Wartofsky L. Propranolol decreases serum thyroxine as well as triiodothyronine in rats: a protein-binding effect. Endocrinology 112: 727, 1983.

    Article  CAS  PubMed  Google Scholar 

  6. Heyma P., Larkins R.G., Campbell D.G. Inhibition by propranolol of 3, 5, 3′-triiodothyronine formation from thyroxine in isolated rat renal tubules: an effect independent of α-adrenergic blockade. Endocrinology 106: 1437, 1980.

    Article  CAS  PubMed  Google Scholar 

  7. Wiersinga W.M, Modderman P., Touber J.L. The effect of α- and β-adrenoceptor agonists and antagonists on the in vitro conversion of thyroxine into triiodothyronine. Horm. Metab. Res. 12: 346, 1980.

    Article  CAS  PubMed  Google Scholar 

  8. Ceremuzynski L., Herbaczynska-Cedro K., Broniszowska-Ardelt B., Nauman J., Nauman A., Wozniewicz B., Lawecki J. Evidence for the detrimental effect of adrenaline infused to healthy dogs in doses imitating spontaneous secretion after coronary occlusion. Cardiovasc. Res. 12; 179, 1978.

    Article  CAS  PubMed  Google Scholar 

  9. Nauman A., Kaminski T., Herbaczynska-Cedro K. In vivo and in vitro effects of adrenaline on conversion of thyroxine to triiodothyronine and to reverse-triiodothyronine in dog liver and heart. Eur. J. Clin. Invest. 10: 189, 1980.

    Article  CAS  PubMed  Google Scholar 

  10. Nauman A., Porta S., Bardowska U., Fiedorowicz K., Sadjak A., Korsatko W., Nauman J. The effect of adrenaline pretreatment on the in vitro generation of 3,5,3′-triiodothyronine and 3, 3′, 5′-triiodothyronine in rat liver preparation. Horm. Metab. Res. 16: 471, 1984.

    Article  CAS  PubMed  Google Scholar 

  11. Aanderud S., Aarbakke J., Sundzfjord J. Effect of different α-blocking drugs and adrenaline on the conversion of thyroxine to triiodothyronine in isolated rat hepatocytes. Horm. Metab. Res. 18: 110, 1986.

    Article  CAS  PubMed  Google Scholar 

  12. Keck F.S., Loos V., Wolf Ch.-F., Meyerhoff C., Pfeiffer E.F. Adrenergic modulation of T4-conversion in rat liver microsomes (Abstract). Ann. Endocrinol. (Paris) 47: 24, 1986.

    Google Scholar 

  13. Földes O., Langer P., Straussova K., Brozmanova H., Gschwendtova K. Direct quantitative estimation of several iodothyronines in rat bile by radioimmunoassay and basal data on their biliary excretion. Biochim. Biophys. Acta 716: 383, 1982.

    Article  PubMed  Google Scholar 

  14. Földes O., Langer P., Brozmanova H., Straussova K., Gschwendtova K. In vivo study of iodothyronine deiodination in rat liver: effect of salicylate on biliary excretion of several iodothyronines. Horm. Metab. Res. 15: 147, 1983.

    Article  PubMed  Google Scholar 

  15. Langer P., Földes O., Straussova K., Gschwendtova K. Preliminary observations on the absorption of biliary iodothyronines from the intestine in vivo in rats. Endocrinol. Exp. 16: 117, 1982.

    CAS  PubMed  Google Scholar 

  16. Langer P., Suzuki M., Kakegawa T., Földes O., Gschwendtova K. Acute changes of iodothyronine excretion by bile after a single and repeated administration of dexamethasone in rats. Endocrinol. Exp. 19: 253, 1985.

    CAS  PubMed  Google Scholar 

  17. Klaassen C.D., Watkins III J.B. Mechanisms of bile formation, hepatic uptake and biliary excretion. Pharmacol. Rev. 36: 1, 1984.

    CAS  PubMed  Google Scholar 

  18. Kuipers F., Dijkstra T., Havinga R., van Asselt W., Vonk R.J. Acute effects of pentobarbital-anesthesia on bile secretion. Biochem. Pharmacol. 34: 1731, 1985.

    Article  CAS  PubMed  Google Scholar 

  19. Lucas P.D. Effects of stroptozotocin-induced diabetes and noradrenaline infusion on cardiac output and its regional distribution in pithed rats. Diabetologia 28: 108, 1985.

    CAS  PubMed  Google Scholar 

  20. Pang C.C.Y., Tabrizchi R. The effects of noradrenaline, B-HT 920, methoxamine, angiotensin II and vasopressin on mean circulatory filling pressure in conscious rats. Br. J. Pharmacol. 89: 389, 1986.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Silva J.E., Larsen P.R. Hormonal regulation of iodothyronine 5′-deiodinase in rat brown adipose tissue. Am. J. Physiol. 251: E639, 1986.

    CAS  PubMed  Google Scholar 

  22. Obregon M.J., Mills I., Silva J.E., Larsen P.R. Catecholamine stimulation of iodothyronine 5′-deiodinase activity in rat dispersed brown adipocytes. Endocrinology 120: 1069, 1987.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langer, P., Földes, O. Effect of adrenaline on biliary excretion of triiodothyronines in rats mediated by alpha1-adrenoceptors and related to the inhibition of 5’-monodeiodination in liver. J Endocrinol Invest 11, 471–476 (1988). https://doi.org/10.1007/BF03350162

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03350162

Key-words

Navigation