Skip to main content
Log in

Qualitative and quantitative defects of thyroglobulin resulting in congenital goiter. Absence of gross gene deletion of coding sequences in the TG gene structure

  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Seven subjects belonging to three families (ME, MA, MO), with congenital goiter and various degrees of thyroid hypofunction, were investigated from the standpoints of clinical, biochemical, and molecular biology. In two of these families (ME, MA), 6 individuals had low serum levels of Tg-related antigens with a minor increase after bovine TSH (bTSH) stimulation. A large proportion of the tracer was incorporated into serum albumin, and Tg antigens in the thyroid extracts were barely detectable by RIA. (0.19 mg/g tissue; normal, 70–90 mg/g). Gel filtration (CL6B Sepharose gel) showed absence of a normal Tg peak, and SDS agarose gel electrophoresis indicated complete absence of Tg dimer and monomer. Immunoelectrophoresis confirmed the absence of Tg-related antigens. Thus, in these patients a quantitative defect of Tg gene expression was characterized. By contrast, in the MO family a high basal serum concentration of immunoreactive Tg was present, with an exaggerated response to bTSH. Thyroid extracts revealed elevated TPO activity and normal levels of Tg-related antigens. Tg was also eluted in the gel filtration columns with the same mobility as standard 19S Tg. Immunoelectrophoresis against rabbit and human Tg was abnormal, with two precipitin arcs being detected. The Tg molecule after hydrolysis yielded only DIT and MIT, with poor formation of iodothyronines. Microscopic studies revealed a pronounced lack of colloid in the follicular lumina, and overdistended endoplasmic reticulum cisternae. It was concluded that in this family the defective Tg gene expression is qualitative, with an abnormal Tg being formed and only partially transported to the follicular lumen. Southern blotting experiments to probe Tg gene structure indicated no significant differences in pattern between DNA samples from controls and those from goitrous patients. This suggests defective translation or abnormal routing of translation product through the membrane system of the cell. Further studies of the Tg mRNA and DNA structure will be needed to clarify the exact nature of both defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dunn J.T., Kim P.S., Dunn A.D., Heppner Jr. D.G., Moore R. The role of iodination in the formation of hormonepeptides from thyroglobulin. J. Biol. Chem. 258: 9093, 1983.

    PubMed  CAS  Google Scholar 

  2. Vassart G., Bacolla A., Brocas H., Cristophe D., De Martynoff G., Leriche A., Mercken L., Parma J., Pohl V., Targovnik H., Van Herverswyn B. Structure, expression and regulation of the thyroglobulin gene. Mol. Cell Endocrinol. 40: 89, 1985.

    Article  PubMed  CAS  Google Scholar 

  3. De Vijlder J.J.M., Baas F., Kok K., Van Dijk J.E., Van Kesset A.G., Van Ommen G.J.B., Tegelaers W.H.H. Molecular basis of thyroglobulin synthesis defects. In: Eggo M.C., Burrow G.N. (Eds.): Progress in endocrine research and therapy. Raven Press, New York, 1985, p. 69.

    Google Scholar 

  4. Lever E.G., Medeiros-Neto G.A., De Groot L.J. Inherited disorders of thyroid metabolism. Endocr. Rev. 4: 213, 1983.

    Article  PubMed  CAS  Google Scholar 

  5. Van Jaarsveld P., Van Den Walt B., Theron C.N. Afrikander cattle congenital goiter: purification and partial identification of the complex iodoprotein pattern. Endocrinology 91: 470, 1972.

    Article  PubMed  Google Scholar 

  6. Ricketts M.H., Pohl V., De Martynoff G., Boyd C.D., Bester A.J., Van Jaarsveld P.P., Vassart G. Defective splicing of thyroglobulin gene transcripts in the congenital goiter of the Afrikander cattle. EMBO J. 4: 731, 1985.

    PubMed Central  PubMed  CAS  Google Scholar 

  7. Ricketts M.H., Simons M.J., Parma J., Mercken L., Dong Q., Vassart G. A nonsense mutation causes hereditary goiter in the Afrikander cattle and unmasks alternative splicing of thyroglobulin transcripts. Proc. Natl. Acad. Sci. USA 84: 3181, 1987.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  8. De Vijlder J.J.M., Van Voorthuiden W.F., Van Dijk J.E., Rijnberk A., Tegelaers W.H.H. Hereditary congenital goiter with thyroglobulin deficiency in a breed of goats. Endocrinology 102: 1214, 1978.

    Article  PubMed  Google Scholar 

  9. Van Dijk J.E. Congenital goiter in Dutch goats: a pathological characterization and an investigation of the origin of abnormal iodoproteins. Thesis, State University of Utrecht, 1981.

  10. Van Ommen G.J.B., Sterk A., Mercken L.O.Y., Arnberg A.C., Baas F., De Vijlder J.J.M. Studies on the structures of the normal and abnormal goat thyroglobulin genes. Biochimie 71: 211, 1989.

    Article  PubMed  Google Scholar 

  11. Beamer W.G., Maltais L.J., De Baets M.H., Eicher E.M. Inherited congenital goiter in mice. Endocrinology 120: 838, 1987.

    Article  PubMed  CAS  Google Scholar 

  12. Taylor B.A., Rowe L. The congenital goiter mutation is linked to the thyroglobulin gene in the mouse. Proc. Natl. Acad. Sci. USA 84: 1986, 1987.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Basche M., Beamer W.G., Schneider A.B. Abnormal properties of Thyroglobulin im mice with inherited congenital goiter (cog/cog). Endocrinology 124: 1822, 1989.

    Article  PubMed  CAS  Google Scholar 

  14. Lissitzky S., Codaccioni J.L., Cartouzou G., Mante S. Eumetabolic goiters adult with iodoprealbumin in thyroid tissue and blood. J. Clin. Endocrinol. Metabol. 24: 305, 1964.

    Article  CAS  Google Scholar 

  15. Lissitzky S., Bismuth J., Codaccioni J.L., Cartouzou G. Congenital goiter with iodoalbumin replacing thyroglobulin and defect of deiodination of iodothyronines. Serum origin of the thyroid iodoalbumin. J. Clin. Endocrinol. Metab. 28: 1797, 1968.

    Article  PubMed  CAS  Google Scholar 

  16. Andreoli M., Monaco F., D’Armiento M., Fontana S., Scuncio G., Salabé G.B. Abnormal iodoproteins in human congenital goiter. Hormones 1: 209, 1970.

    Article  PubMed  CAS  Google Scholar 

  17. Lissitzky S., Bismuth J., Jaquet P., Castay M., Michel-Béchet M., Koutras D.A., Pharmakiotis A.D., Moschos A., Psarras A., Malamos B. Congentital goiter with impaired thyroglobulin synthesis. J. Clin. Endocrinol. Metab. 36: 17, 1973.

    Article  PubMed  CAS  Google Scholar 

  18. Monaco F., Andreoli M., Beretta-Anguissola A. Isolation and characterization of soluble and particulate thyroid iodoproteins in human congenital goiter. Horm. Res. 5: 141, 1974.

    Article  PubMed  CAS  Google Scholar 

  19. Niepomniscze H., Medeiros-Neto G.A., Refetoff S., De Groot L.J., Fang V.S. Familial goiter with partial iodine organification defect, lack of thyroglobulin, and high levels of thyroid peroxidase. Clin. Endocrinol. (Oxf.) 6: 27, 1977.

    Article  Google Scholar 

  20. Gons M.H., Kok J.H., Tegelaers W.H.H., De Vijlder J.J.M. Concentrations of plasma thyroglobulin and urinary excretion of iodinated material in the diagnosis of thyroid disorders in congenital hypothyroidism. Acta Endocrinol. (Copenh.) 104: 27, 1983.

    CAS  Google Scholar 

  21. Cabrer B., Brocas H., Perez-Castillo A., Pohl V., Navas J.J., Targovnik H., Centenera J.A., Vassart G. Normal level of thyroglobulin messenger ribonucleic acid in human congenital goiter with thyroglobulin deficiency. J. Clin. Endocrinol. Metab. 63: 931, 1986.

    Article  PubMed  CAS  Google Scholar 

  22. Medeiros-Neto G.A., Stanbury J.B. Particulate iodoprotein in abnormal thyroid glands. J. Clin. Endocrinol. Metab. 26: 23, 1966.

    Article  PubMed  CAS  Google Scholar 

  23. Mouriz J., Riesco G., Usobiaga P. Thyroid proteins in a goitrous cretin with iodide organification defect. J. Clin. Endocrinol. Metab. 29: 942, 1969.

    Article  PubMed  CAS  Google Scholar 

  24. Furth E.D., Agrawal R.B., Propp R.P. Secretion of iodoalbumin and iodoprealbumin by a congenital goiter containing thyroglobulin and the iodoalbumin. J. Clin. Endrocrinol. Metab. 30: 60, 1970.

    Article  Google Scholar 

  25. Torresani J., Lissitzky S. Further studies on abnormal thyroglobulin from congenital goiters likely related to defective thyroglobulin export. In: Robbins J., Braverman L.E. (Eds.), Thyroid research. Excerpta Medica, Amsterdam, 1986, p. 453.

    Google Scholar 

  26. Medeiros-Neto G.A., Nakashima T., Taurog A., Knobel M., Simonetti J.P., Mattar E. Congenital goiter and hypothyroidism with impaired iodide organification and high thyroid peroxidase concentration. Clin. Endocrinol. (Oxf.) 11: 123, 1979.

    Article  CAS  Google Scholar 

  27. McKenna T.J., Loughfin T., Ohman M., Schneider A., Towers R. Mild familial goitrous hypothyroidism associated with prolonged 131-iodine retention: possible defect in thyroglobulin synthesis. J. Endocrinol. Invest. 12: 229, 1989.

    Article  PubMed  CAS  Google Scholar 

  28. Baas F., Bikker H., Van Ommen G.J.B., De Vijlder J.J.M. Unusual scarcity of restriction site polymorphism in the human thyroglobulin gene. A linkage study suggesting autosomal dominance of a defective thyroglobulin allele. Hum. Genet. 67: 301, 1984.

    Article  PubMed  CAS  Google Scholar 

  29. Nagasaka A., Nihei N., Hirooka Y., Mitsuma T., Kataoka K., Nakagawa H., Ohyama T., Nakai A., Aono T., Iwase K., Ishizuki Y., Takayanagi T. Congenital goiter sustaining normal level of serum triiodothyronine. Horm. Metab. Res. 18: 862, 1986.

    Article  PubMed  CAS  Google Scholar 

  30. Silva J.E., Santelier R., Kishibara M., Schneider A. Low molecular weight thyroglobulin leading to a goiter in a 12-year-old girl. J. Clin. Endocrinol. Metab, 58: 526, 1984.

    Article  PubMed  CAS  Google Scholar 

  31. Medeiros-Neto G.A., Kieffer J., Nicolau W., Ulhoa-Cintra A.B. Plasma chromatography of iodinated compounds in cryptothyroidism. J. Clin. Endocrinol. Metab. 27: 1053, 1967.

    Article  PubMed  CAS  Google Scholar 

  32. Maniatis T., Fritsch E.F., Sambrook J. Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory, New York, 1982.

    Google Scholar 

  33. Bergé-Lefranc J.L., Cartouzou G., Malthiery Y., Perrin F., Jarry B., Lissitzky S. Cloning of four DNA fragments complementary to human thyroglobulin messenger RNA. Eur. J. Biochem. 120: 1, 1981.

    Article  PubMed  Google Scholar 

  34. Brocas H., Christophe D., Pohl V., Vassart G. Cloning of human thyroglobulin complementary DNA. FEBS Lett. 137: 189, 1982.

    Article  PubMed  CAS  Google Scholar 

  35. Targovnik H.M. Estructura de la región 5′ del gen de la tiroglobulina humana. Thesis, University of Buenos Aires, Argentina, 1989.

    Google Scholar 

  36. Medeiros-Neto G.A., Marcondes J.A., Cavaliere H., Wajchenberg B.L., Knobel M. Serum thyroglobulin stimulation with bovine TSH: a useful test for diagnosis of congenital goiters hypothyroidism due to defective thyroglobulin synthesis. Acta Endocrinol. (Copenh.) 110: 61, 1985.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by grants from SANBRA (São Paulo, Brazil), Fundación Bunge & Born, Programa Nacional de Biotecnologia, SECYT, Argentina (326/86), CONICET (19844/85, 9780/86) and Universidad de Buenos Aires (017 ME/87). H. Targovnik is a member of the “Carrera del Investigador”, CONICET, Argentina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medeiros-Neto, G., Targovnik, H., Knobel, M. et al. Qualitative and quantitative defects of thyroglobulin resulting in congenital goiter. Absence of gross gene deletion of coding sequences in the TG gene structure. J Endocrinol Invest 12, 805–813 (1989). https://doi.org/10.1007/BF03350067

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03350067

Key-words

Navigation