Skip to main content
Log in

Comparative neuroanatomical aspects of the salt and water balance in birds and mammals

  • Review Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Johnson A.K. The periventricular anteroventral third ventricle (AV3V): its relationship with the subfornical organ and neural systems involved in maintaining body fluid homeostasis. Brain Res. Bull. 15: 595, 1985.

    PubMed  CAS  Google Scholar 

  2. Simon-Oppermann Ch., Simon E. and Gray D.A. Central and systemic antidiuretic hormone and angiotensin II in salt and fluid balance in birds as compared to mammals. Comp. Biochem. Physiol. 90A: 789, 1988.

    CAS  Google Scholar 

  3. Handler J.S., Orloff J. The mechanism of action of antidiuretic hormone. In: J. Orloff, R.W. Berliner (Eds.), Handbook Physiology, Section 8, Renal Physiology. American Physiological Society, Washington, D.C., 1973, p. 791.

    Google Scholar 

  4. Reid I.A. Endocrine regulation of body fluid balance. In: N.C. Staub, A.W. Taylor (Eds.), Edema. Raven Press, New York, 1984. p. 353.

  5. Verney E.B. The antidiuretic hormone and factors which determine its release. Proc. R. Soc. London, Ser. B, 135: 25, 1947.

    CAS  Google Scholar 

  6. Andersson B. The effect of injections of hypertonic NaCl-solutions into different parts of the hypothalamus of goats. Acta Physiol. Scand. 18: 188, 1953.

    Google Scholar 

  7. Fitzsimons J.T. Thirst. Physiol. Rev. 52: 468, 1972.

    PubMed  CAS  Google Scholar 

  8. Hayward J.N. Neural control of the posterior pituitary. Ann. Rev. Physiol. 37: 191, 1975.

    CAS  Google Scholar 

  9. Andersson B., Dallman M., Olsson K. Observations on central control of drinking and the release of antidiuretic hormone (ADH). Life Sci. 8: 425, 1969.

    PubMed  CAS  Google Scholar 

  10. Olsson K. Further evidence for the importance of CSF Na+ concentration in central control of fluid balance. Acta Physiol. Scand. 88: 183, 1973.

    PubMed  CAS  Google Scholar 

  11. Andersson B, Olsson K. On central control of body fluid homeostasis. Cond. Reflex 8: 147, 1973.

    PubMed  CAS  Google Scholar 

  12. Andersson B. Regulation of body fluids. Ann. Rev. Physiol. 39: 185, 1977.

    CAS  Google Scholar 

  13. Dorn J.B., Levine N., Kaley G., Rothballer A.B. Natriuresis induced by injection of hypertonic saline into the third cerebral ventricle of dogs. Proc. Soc. Exp. Biol. Med. 131: 240, 1969.

    PubMed  CAS  Google Scholar 

  14. Dorn J.B., Porter J.C. Diencephalic involvement in sodium excretion in the rat. 69 Endocrinology 86: 1112, 1970.

    CAS  Google Scholar 

  15. Blaine E.H., Denton D.A., McKinley M.J., Weller S. A central osmosensitive receptors for renal sodium excretion. J. Physiol. (London) 224: 497, 1975.

    Google Scholar 

  16. Simon E., Erikson S., Gerstberger R., Gray D.A., Simon-Oppermann Ch. Comparative aspects of osmoregulation. In: B. Scharrer, H.-W. Korf, H.G. Hartwig (Eds.), Functional morphology of endocrine systems: Evolutionary and environmental aspects. Springer Verlag, Berlin, 1987, p. 37.

    Google Scholar 

  17. Linazasoro J.M., Jme’nez Diaz C., Castro Mendoza H.J. The kidney and thirst regulation. Bull. Inst. Med. Res. Madrid 7: 53, 1954.

    CAS  Google Scholar 

  18. Simpson J.B., Routtenberg A. Subfornical organ: site of drinking elicitation by angiotensin II. Science 181: 1172, 1978.

    Google Scholar 

  19. Simpson J.B. The circumventricular organs and the central action of angiotensin. Neuroendocrinology 32: 248, 1981.

    PubMed  CAS  Google Scholar 

  20. Ferguson A.V. The subfornical organ: A central integrator in the control of neurohypophysial hormone secretion. In: Organization of the autonomic nervous system: Central and Peripheral. Mechanisms. A.R. Liss Inc., New York, 1987, p. 435.

    Google Scholar 

  21. Fisher Ferraro C., Nahmod V.E., Goldstein D.J., Finkielman S. Angiotensin and renin in rat and dog brain. J. Exp. Med. 133: 353, 1971.

    Google Scholar 

  22. Ganten D., Minnich J.L., Granger P., Hayduk K., Brecht H.M., Barbeau A., Boucher R., Genest J. Angiotensin-forming enzyme in brain tissue. Science 173: 64, 1971.

    PubMed  CAS  Google Scholar 

  23. Printz M.P., Ganten D., Ungert T., Phillips M.I. Minireview: the brain renin angiotensin system. Exp. Brain Res. (Suppl. 4): 3, 1982.

  24. Ganten D., Hermann K., Bayer C., Linger T., Lang R.E. Angiotensin synthesis in the brain and increased turnover in hypertensive rats. Science 221: 869, 1983.

    PubMed  CAS  Google Scholar 

  25. Slaven B. Influence of salt and volume on changes in rat brain angiotensin. J. Pharm. Pharmacol. 27: 783, 1975.

    Google Scholar 

  26. Olsson K., Kolmodin R. Accentuation by angiotensin II of the antidiuretic and dipsogenic responses to intracarotid infusions of NaCl and fructose. Acta Endocrinol. (Copenh.) 75: 333, 1974.

    CAS  Google Scholar 

  27. Andersson B., Keskell L.G., Rundgren M. Duration of central action of angiotensin II estimated by its interaction with CSF Na+. Acta Physiol. Scand. 93: 472, 1975.

    PubMed  CAS  Google Scholar 

  28. Bryant R.W., Epstein A.N., Fitzsimons J.T., Fluharty S.J. Arousal of a specific and persistent sodium appetite in the rat with continuous intracerebroventricular infusion of angiotensin II. J. Physiol. (London) 301: 365, 1980.

    CAS  Google Scholar 

  29. Keil L.C. Severs W.B. Release of vasopressin by angiotensin II. Endocrinology 96: 1063, 1975.

    PubMed  CAS  Google Scholar 

  30. Hoffman W.E., Philipps M.I., Schmid P.G., Falcon J., West J.F. Antidiuretic hormone release and the pressor response to central angiotensin II and cholinergic stimulation. Neuropharmacol. 16: 463, 1977.

    CAS  Google Scholar 

  31. Lind R.W., Swanson L.W., Ganten D. Organization of angiotensin II immunoreactive cells and fibers in the rat central nervous system. An immunohistochemichal study. Neuroendocrinology 40: 2, 1985.

    CAS  Google Scholar 

  32. Lind R.W., Swanson L.W., Bruhn T.O., Ganten D. The distribution of angiotensin II-immunoreactive cells and fibers in the paraventriculo-hypophysial system of the rat. Brain. Res. 338: 81, 1985.

    PubMed  CAS  Google Scholar 

  33. Imboden H., Harding J.W., Abhold R.W., Ganten D., Felix D. Improved immunohistochemical staining of angiotensin II in rat brain using affinity purified antibodies. Brain Res. 426: 225, 1987.

    PubMed  CAS  Google Scholar 

  34. Quinley J.T., Philipps M.I. Immunoreactivity for an angiotensin-like peptide in the human brain. Brain Res. 205: 212, 1980.

    Google Scholar 

  35. Lind R.W., Swanson L.W., Ganten D. Angiotensin II immunoreactive pathways in the central nervous system of the rat: evidence for a projection from the subfornical organ to the paraventricular nucleus of the hypothalamus. Clin. Exper. — Theory and Practice A6: 1915, 1984.

    CAS  Google Scholar 

  36. Carithers J., Bealer S.L., Brody M.J., Johnson A.K. Fine structural evidence of degeneration in supraoptic nucleus and subfornical organ of rats with lesions in the anteroventral third ventricle. Brain Res. 207: 1, 1980.

    Google Scholar 

  37. Simonnet G., Carayon A., Alard M., Cesselin F., Lagoguey A. Evidence for an angiotensin II-like material and for a rapid metabolism of angiotensin II in the rat brain. Brain Res. 304: 93, 1984.

    PubMed  CAS  Google Scholar 

  38. Okuya S., Inenaga K., Kaneko T., Yamashita H. Angiotensin II sensitive neurons in the supraoptic nucleus, subfornical organ and anteroventral third ventricle of rats in vitro. Brain Res. 402: 58, 1987.

    PubMed  CAS  Google Scholar 

  39. Mogenson G.J., Kucharczyk J. Central neural pathways for angiotensin-induced thirst. Fed. Proc. 37: 2683, 1978.

    PubMed  CAS  Google Scholar 

  40. Plunkett L.M., Shigematsu K., Kurihara M., Saavedra J.M. Localization of angiotensin II receptors along the anteroventral third ventricle area of the rat brain. Brain Res. 405: 205, 1987.

    PubMed  CAS  Google Scholar 

  41. Bargmann B. Uber die Neurosekretorische Verknupfung von Hypothalamus und Neurohypophyse. Z. Zellforsch. 34: 610, 1949.

    PubMed  CAS  Google Scholar 

  42. Scharrer E., Scharrer B. Hormones produced in neurosecretory cells. Recent Prog. Horm. Res. 10: 183, 1954.

    CAS  Google Scholar 

  43. Acher R. The nonmammalian-mammalian transition through neurohypophysial peptides. Peptides 6(Suppl. 3): 309, 1985.

    PubMed  CAS  Google Scholar 

  44. Armstrong W.E., Scholler J., McNeill T.H. Immunocytochemical, Golgi and electron microscopic characterization of putative dendrites in the ventral glial lamina of the rat supraoptic nucleus. Neuroscience 7: 679, 1982.

    PubMed  CAS  Google Scholar 

  45. Silverman A.J., Zimmerman E.A. Magnocellular neurosecretory system. Ann. Rev. Neurosci. 6: 357, 1983.

    PubMed  CAS  Google Scholar 

  46. Berk M.L., Finkelstein J.A. Afferent projections to the preoptic area and hypothalamic regions in the rat brain. Neuroscience 6: 1601, 1981.

    PubMed  CAS  Google Scholar 

  47. Tribollet E., Dreyfuss J.J. Localization of neurones projecting to the hypothalamic paraventricular nucleus area of the rat: a horseradish peroxidase study. Neuroscience 6: 1315, 1981.

    PubMed  CAS  Google Scholar 

  48. Warenbourg M. Radioautographic study of the rat brain after injection of (1, 2-3H)-corticosterone. Brain Res. 89: 61, 1975.

    Google Scholar 

  49. Agnati L.F., Fuxe K., Yu Z.-Y., Harfstrand A., Okret S., Wikstrom A.-C., Goldstein M., Zoli M., Vale W., Gustafsson J.-A. Morphometrical analysis of the distribution of corticotrophin releasing factor, glucocorticoid receptor and phenylethanolamine-n-methyltransferase immunoreactive structures in the paraventricular hypothalamic nucleus of the rat. Neurosci. Lett. 54: 147, 1985.

    PubMed  CAS  Google Scholar 

  50. Ricardo J.A., Kohn E.T. Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amigdala and other forebrain structures in the rat. Brain Res. 153: 1, 1978.

    PubMed  CAS  Google Scholar 

  51. McKellar S., Loewy A.D. Organization of some brain stem afferents to the paraventricular nucleus of the hypothalamus of the rat. Brain Res. 217: 351, 1981.

    PubMed  CAS  Google Scholar 

  52. Silverman A.J., Hoffman D.L., Zimmerman E.A. The descending afferent connections of the paraventicular nucleus of the hypothalamus. Brain Res. Bull. 6: 47, 1981.

    PubMed  CAS  Google Scholar 

  53. Hosoya Y, Matsushita M. Identification and distribution of the spinal and hypophyseal projection neurons in the paraventricular nucleus of the rat. A light and electron microscopic study with the HRP method. Exp. Brain Res. 35: 315, 1979.

    CAS  Google Scholar 

  54. Swanson L.W., Kuypers A.G.J.M. The paraventricular nucleus of the hypothalamus: Cytoarchitectonics, subdivisions, and organization of projections to the pituitary, dorsal vagal complex and spinal cord as demonstrated by retrograde fluorescence double labeling method. J. Comp. Neurol. 194: 555, 1980.

    PubMed  CAS  Google Scholar 

  55. Wiegand S.J., Price J.L. Cells of origin of afferents fibers to the median eminence in the rat. J. Comp. Neurol. 192: 1, 1980.

    PubMed  CAS  Google Scholar 

  56. Conrad L.C.A., Pfaff D.W. Efferents from medial basal forebrain and hypothalamus in the rat. J. Comp. Neurol. 169: 221, 1976.

    PubMed  CAS  Google Scholar 

  57. Kuypers H.G.J.M., Maisky V.A. Retrograde axonal transport of horseradish peroxidase from spinal cord to brain stem cells groups in the cat. Neurosci. Lett. 1: 9, 1975.

    PubMed  CAS  Google Scholar 

  58. Sofroniew M.V., Weindl A. Identification of parvocellular vasopressin and neurophysin neurons in the suprachiasmatic nucleus of a variety of mammals including primates. J. Comp. Neurol. 193: 659, 1980.

    PubMed  CAS  Google Scholar 

  59. Finley K.H. Angio-architecture of the hypothalamus and its peculiarities. Res. Publ. Res. Assoc. Nerv. Ment Dis. 20: 286, 1940.

    Google Scholar 

  60. Gross P.M., Sposito N.M., Pettersen S.E., Fenstermacher J.D. Differences in function and structure of the capillary endothelium in the supraoptic nucleus and pituitary neural lobe of rats. Evidence for the supraoptic nucleus as an osmometer. Neuroendocrinol. 44: 401, 1986.

    CAS  Google Scholar 

  61. Yulis C.R., Peruzzo B., Rodriguez E.M. Immunocytochemistry and ultrastructure of the neuropil located ventral to the rat supraoptic nucleus. Cell Tiss. Res. 236: 171, 1984.

    CAS  Google Scholar 

  62. Young P.M., Robertson-Rintoul J. Neurophysin containing cerebrospinal fluid contacting neurons in the rat hypothalamus. Neurosci. Lett. (Suppl. 14): 411, 1983 (Abstract).

  63. Young P.M., Higgins F., Robertson-Rintoul J. Hypophysectomy induced proliferation of neurophysin containing processes in the ventral glial lamina of the rat supraoptic nucleus and in the basal meninges. Neurosci. Lett. (Suppl. 18): 93, 1984 (Abstract).

    Google Scholar 

  64. Weindl A., Joynt R.J. Ultrastructure of ventricular walls. Three-dimensional study of regional specialization. Arch. Neurol. 26: 420, 1972.

    CAS  Google Scholar 

  65. Wilson J.X. The renin-angiotensin system in nonmammalian vertebrates. Endocr. Rev. 5: 45, 1984.

    PubMed  CAS  Google Scholar 

  66. Simon E. The osmoregulatory system of birds with salt glands. Comp. Biochem. Physiol. A71: 547, 1982.

    PubMed  CAS  Google Scholar 

  67. Simon-Oppermann Ch., Simon E. Osmotic and volume control of diuresis in conscious ducks. J. Comp. Physiol. 146: 17, 1982.

    Google Scholar 

  68. Wilson J.X., Butler D.G. The effects of extracellular NaCI, corticosterone and ouabain on the Na+, K+, and water concentrations in the nasal salt glands of freshwater and salt-adapted pekin ducks (Anas platyrhynchos). Comp. Biochem. Physiol. 66A: 583, 1980.

    CAS  Google Scholar 

  69. Wilson J.X., Butler D.G. Catecholamine-mediated pressor responses to angiotensin II in the pekin duck (Anas plathyrhynchos). Gen. Comp. Endocrinol. 51: 477, 1983.

    PubMed  CAS  Google Scholar 

  70. Kobayashi H. Morphology and function of the subfornical organ of the circumventricular system in relation to drinking behavior. Acta XVII Congr. Internat. Ornithologici Deutsche. Ornithologen-Gesellschaft Berlin, 1980, p. 228.

  71. Thornton S.N. The influence of intracerebroventricular infusions on osmotically induced urine excretion in the pigeon (Columba livia). Physiol. Behav. 37: 673, 1986.

    PubMed  CAS  Google Scholar 

  72. Acher R., Chauvet J., Chauvet M.T., Hurpet D. Evolution of neurohypophysial hormones and their precursors. In: B. Lofts, W.N. Holmes (Eds.), Current trends in comparative endocrinology. Hong Kong Univ. Press, Hong Kong, 1985, p. 1147.

    Google Scholar 

  73. Deutsch H., Simon E. Intracerebroventricular osmosensitivity in the Pekin duck. Pfluegers Arch. 387: 1, 1980.

    CAS  Google Scholar 

  74. Simon-Oppermann Ch., Simon E., Deutsch H., Morning J., Schoun J. Serum arginine-vasotocin (AVT) and afferent and central control of osmoregulation in conscious Pekin Ducks. Pfluegers Arch. 387: 99, 1980.

    CAS  Google Scholar 

  75. Mohring J., Schoun J., Simon-Oppermann Ch., Simon E. Radioimmunoassay for arginine-vasotocin (AVT) in serum of Pekin ducks: AVT concentrations after adaptation to fresh water and salt water. Pfluegers Arch. 387: 91, 1980.

    CAS  Google Scholar 

  76. Takei Y. Angiotensin and water intake in the Japanese quail. Gen. Comp. Endocrinol. 31: 363, 1977.

    Google Scholar 

  77. Wada M., Kobayashi H. Induction of drinking in the white-crowned sparrow, Zonotrichia leucophrys gambelii, by intracranial injection of angiotensin II. Gen. Comp. Endocrinol. 26: 192, 1975.

    PubMed  CAS  Google Scholar 

  78. Schwab J.E., Johnson A.K. Angiotensin-induced dipsogenesis in domestic fowl (Gallus gallus). J. Comp. Physiol. Psychol. 91: 182, 1977.

    Google Scholar 

  79. Gerstberger R, Gray D.A., Simon E. Circulatory and osmoregulatory effects of angiotensin II perfusion of the third ventricle in a bird with salt gland. J. Physiol. (London) 349, 167, 1984.

    CAS  Google Scholar 

  80. Evered M.D., Fitzsimons J.T. Drinking and changes in blood pressure in response to angiotensin II in the pigeon (Columba livia). J. Physiol. 301: 337, 1981.

    Google Scholar 

  81. Evered M.D., Fitzsimons J.T. Drinking and changes in blood pressure in response to precursors, fragments and analogues of angiotensin II in the pigeon (Columba livia). J. Physiol. 310: 353, 1981.

    PubMed Central  PubMed  CAS  Google Scholar 

  82. Gray D.A., Simon E. Dehydration and arginine vasotocin and angiotensin II in CSF and plasma of Pekin ducks. Am. J. Physiol. 253: R285, 1987.

    PubMed  CAS  Google Scholar 

  83. Gerstberger R., Healy D.P., Hammel H.T., Simon E. Autoradiographic localization and characterization of circumventricular angiotensin II receptors in duck brain. Brain Res. 400: 165, 1987.

    PubMed  CAS  Google Scholar 

  84. Massi M., De Caro G., Mazzarella L., Epstein A.N. The role of subfornical organ in the drinking behaviour of the pigeon. Brain Res. 381: 289, 1986.

    PubMed  CAS  Google Scholar 

  85. Takei Y., Kobayashi H., Yanagisawa M., Bando T. Involvement of catecholaminergic fibers in angiotensin II-induced drinking in the Japanese quail, Coturnix coturnix japonica. Brain Res. 174: 229, 1979.

    PubMed  CAS  Google Scholar 

  86. Ames E., Steven K., Skadhauge E. Effects of arginine vasotocin on renal excretion of Na+, Cl-and urea in the hydrated chicken. Am. J. Physiol. 221: 1223, 1971.

    PubMed  CAS  Google Scholar 

  87. Schmidt-Nielsen K. The salt-secreting glands of marine birds. Circulation 21: 955, 1960.

    PubMed  CAS  Google Scholar 

  88. Yamauchi K., Yasuda M. Cyto-, Dendro- and fibro-architectonic studies on the chicken hypothalamus. J. Hirnforsch. 26: 509, 1985.

    PubMed  CAS  Google Scholar 

  89. Gabe M. Neurosecretion. Pergamon Press, Oxford — London, New York, 1966.

    Google Scholar 

  90. Oksche A, Farner D.S. Neurohistological studies of the hypothalamo-hypophysial system of Zonotrichia Leucophrys gambelii (Aves, Passeriformes), with special attention to its role in the control of reproduction. Adv. Anat. Embryol. Cell Biol. 48: 1, 1974.

    PubMed  CAS  Google Scholar 

  91. Nishioka R.S. Fine structure of the supraoptic neurosecretory neurons in the White-crowned Sparrox. J. Ultrastruc. Res. 17: 176, 1967.

    CAS  Google Scholar 

  92. Oehmke H.J., Priedkalns J., Vaupel von Harnack M., Oksche A. Fluorescenz- und elektronmikroscopische Utersuchungen am Zwischernhim-Hypophysensystem von Passer Domesticus. Z. Zellforschun. 95: 109, 1969.

    CAS  Google Scholar 

  93. Priedkalns J., Oksche A. Ultrastructure of synaptic terminals in nucleus supraopticus of Passer Domesticus. Z. Zellforschun. 98: 135, 1969.

    CAS  Google Scholar 

  94. Viglietti-Panzica C., Panzica G.C. The hypothalamic magnocellular system in the domestic fowl-A Golgi and electron microscope study. Cell. Tiss. Res. 215: 113, 1981.

    CAS  Google Scholar 

  95. Goossens N., Blahser S., Oksche A., Vandesande F., Dierickx K. Immunocytochemical investigation of the hypothalamo-neurohypophysial system in birds. Cell. Tissue Res. 184: 1, 1977.

    PubMed  CAS  Google Scholar 

  96. Oksche A., Wilson W.O., Farner D.S. The hypothalamic neurosecretory system of Coturnix coturnix japonica. Z. Zellforsch. 67: 688, 1964.

    Google Scholar 

  97. Oksche A., Farner D.S., Serventy D.L., Wolff F., Nicholls C.A. THe hypothalamo-hypophysial neurosecretory system of the Zebra Finch, Taeniopygia castanotis. Z. Zellforsch. 58: 846, 1963.

    PubMed  CAS  Google Scholar 

  98. Oksche A., Laws D.F., Kamemoto F.E., Farner D.S. The hypothalamo-hypophysial neurosecretory system of the White-crowned Sparrow, Zonotrichia Leucophrys gambelii. Z. Zellforsch. 51: 1, 1959.

    PubMed  CAS  Google Scholar 

  99. Mikami S.-I., Kawamura K., Oksche A., Farner D.S. The fine structure of the hypothalamic secretory neurons of the White-crowned Sparrow, Zonotrichia Leucophrys gambelii (Passeriformes; Fringillidae). II. Magnocellular and parvocellular nuclei of the rostral hypothalamus. Cell. Tissue Res. 165: 415, 1976.

    CAS  Google Scholar 

  100. Panzica G.C., Viglietti-Panzica C., Contenti E. Synaptology of neurosecretory cells in the nucleus paraventricularis of the domestic fowl. Cell Tissue. Res. 227: 79, 1982.

    PubMed  CAS  Google Scholar 

  101. Duncan F. An electron microscope study of the neurohypophysis of a bird, Gallus domesticus. Anat Res. 125: 457, 1956.

    CAS  Google Scholar 

  102. Viglietti-Panzica C., Bessè M.C. The Organum vascolosum laminae terminalis of the domestic fowl: A Golgi and ultrastructural study. Anat. Anz. 155: 341, 1984.

    Google Scholar 

  103. Zambrano D., De Robertis E. The secretory cycle of supraoptic neurons in the rat. A structural-functional correlation. Z. Zellforsch. 73: 414, 1966.

    Google Scholar 

  104. Panzica G.C., Corvetti G., Anselmetti G.C, Viglietti-Panzica C. E.M. Immunocytochemichal study of the avian vasotocin-immunoreactive system. Eur. J. Neurosci (Suppl. 1): 300, 1988 (Abstract).

  105. Korf H.-W., Viglietti-Panzica C., Panzica G.C. A Golgi study on the cerebrospinal fluid (CSF)-contacting neurons in the paraventricular nucleus of the Pekin duck. Cell. Tissue Res. 228: 149, 1983.

    Google Scholar 

  106. Panzica G.C., Viglietti-Panzica C. A Golgi study of the parvocellular neurons in the paraventricular nucleus of the domestic fowl. Cell. Tissue Res. 231: 603, 1983.

    Google Scholar 

  107. Bons N. The topography of mesotocin and vasotocin systems in the brain of the domestic mallard and Japanese quail: immunocytochemical identification. Cell Tissue Res. 213: 37, 1980.

    Google Scholar 

  108. Berk M.L., Reaves T.A., Hayward J.N., Finkelstein J.A. The localization of vasotocin and neurophysin neurons in the diencephalon of the pigeon Columba livia. J. Comp. Neurol. 204: 392, 1982.

    Google Scholar 

  109. Viglietti-Panzica C. Immunohistochemical study of the distribution of vasotocin reactive neurons in avian diencephalon. J. Hirnforsch. 27: 559, 1986.

    Google Scholar 

  110. Kiss J.Z., Voorhuis T.A.M., van Eekelen J.A.M., de Kloet E.R., de Wied D. Organization of vasotocin-immunoreactive cells and fibers in the canary brain. J. Comp. Neurol. 263: 347, 1987.

    PubMed  CAS  Google Scholar 

  111. Panzica G.C. Vasotocin-immunoreactive elements and neuronal typology in the suprachiasmatic nucleus of the chicken and Japanese quail. Cell Tissue Res. 242: 371, 1985.

    PubMed  CAS  Google Scholar 

  112. Cassone V.M., Moore R.Y. Retinohypothalamic projection and suprachiasmatic nucleus of the house sparrow. Passer domesticus. J. Comp. Neurol. 266: 171, 1988.

    Google Scholar 

  113. Blahser S., Simon E. Immunocytochemical studies on vasotocinergic and mesotocinergic neurons in the hypothalamus of osmotically stressed domestic mallards. Gen. Comp. Endocrinol. 34: 67, 1978 (Abstract).

    Google Scholar 

  114. Panzica G.C., Fiori M.G., Viglietti-Panzica C. Vasotocin fibers in the mesencephalon and pons of the domestic fowl. An immunohistochemical study. Neurosci. Lett. 68: 155, 1986.

    CAS  Google Scholar 

  115. Panzica G.C., Calcagni M., Ramieri G., Viglietti-Panzica C. Extrahypothalamic distribution of vasotocin-immunoreactive fibers and perikarya in the avian central nervous system. Basic Appl. Histochem. 32: 89, 1988.

    PubMed  CAS  Google Scholar 

  116. Panzica G.C., Korf H.-W., Ramieri G., Viglietti-Panzica C. Golgi-type and immunocytochemical studies on the intrinsic organization of the periventricular layer of the avian paraventricular nucleus. Cell Tissue Res. 243: 317, 1986.

    Google Scholar 

  117. Mikami S.-I. Immunocytochemistry of the avian hypothalamus and adenohypophysis. Int. Review Cytol. 103: 189, 1986.

    CAS  Google Scholar 

  118. Korf H.-W., Panzica G.C., Viglietti-Panzica C., Oksche A. Pattern of peptidergic neurons in the avian brain: clusters — local circuitries — projections. Basic Appl. Histochem. 32: 55, 1988.

    PubMed  CAS  Google Scholar 

  119. Blahser S. Peptidergic pathways in the avian brain. J. Exptl. Zool. 232: 397, 1984.

    CAS  Google Scholar 

  120. Cross B.A., Dyball R.E., Dyer R.G., Jones C.W., Lincoln D.W., Morris J.F., Pickering B.T. Endocrine Neurones. Recent Prog. Horm. Res. 31: 243, 1975.

    PubMed  CAS  Google Scholar 

  121. Panzica G.C., Malacarne G., De Bernochi A., Viglietti-Panzica C. Effects of steroid hormones on the neuropil of the hypothalamic paraventricular nucleus of male chickens. Cell Tissue Res. 240: 169, 1985.

    PubMed  CAS  Google Scholar 

  122. Sharp P.J., Follett B.K. The adrenergic supply within the avian hypothalamus. In: W. Bargman, B. Scharrer (Eds.), Aspects of neuroendocrinology. Springer, Berlin, 1970, p. 95.

  123. Warren Soest S., Farner D.S., Oksche A. Fluorescence microscopy of neurons containing primary catecholamines in the ventral hypothalamus of the white crowned sparrow (Zonotrichia leucophrys gambelii). Z. Zellforsch. 141: 1, 1973.

    Google Scholar 

  124. Hartwig H.G. Neurobiologische Studien an photoneuroendockrinen Systemen. Thesis, Fachbereich Humanmedizin, Universität Giessen, 1975.

  125. Fuxe K., Ljunggren I. Cellular localization of monoamines in the upper brain stem of the pigeon. J. Comp. Neurol. 125: 355, 1965.

    PubMed  CAS  Google Scholar 

  126. Oksche A., Hartwig H.G. Structural principles of central neuroendocrine systems. In: A. Epple, M.H. Stetson (Eds.), Avian endocrinology. Academic Press, New York, London, 1980, p. 75.

    Google Scholar 

  127. Guglielmone R., Panzica G.C. Tipology, distribution and development of the catecholamine-containing neurons in the chicken brain. Cell Tissue Res. 237: 67, 1984.

    PubMed  CAS  Google Scholar 

  128. Vigh-Teichmann I., Vigh B. The infundibular cerebrospinal-fluid contacting neurons. Adv. Anat. Embryol. Cell. Biol. 50: 1, 1974.

    PubMed  CAS  Google Scholar 

  129. Vigh-Teichmann I., Vigh B. The system of cerebrospinal fluid-contacting neurons. Arch. Histol. Jap. 46: 427, 1983.

    PubMed  CAS  Google Scholar 

  130. Kiss J.Z., Peczely P. Distribution of tyrosine-hydroxylase (TH)-immunoreactive neurons in the diencephalon of the pigeon (Columba domestica livia). J. Comp. Neurol. 257: 333, 1987.

    PubMed  CAS  Google Scholar 

  131. Korf H.-W, Simon-Oppermann Ch., Simon E. Afferent connections of physiologically identified neuronal complexes in the paraventricular nucleus of conscious Pekin ducks involved in regulation of salt- and water-balance. Cell Tissue Res. 226: 275, 1982.

    PubMed  CAS  Google Scholar 

  132. Korf H.-W. Neuronal organization of the avian paraventricular nucleus: Intrinsic, afferent, and efferent connections. J. Exptl. Zool. 232: 387, 1984.

    CAS  Google Scholar 

  133. Blahser S., Heinrichs M. Immunoreactive neuropeptide systems in avian embryos (domestic mallard, domestic fowl, Japanese quail). Cell Tissue Res. 223: 287, 1982.

    Google Scholar 

  134. Blahser S. Vasotocin and mesotocin systems in birds. In: D.S. Farner, K. Lederis (Eds.) Neurosecretion: Molecules, Cells, Systems. Plenum Publ. Co., New York, 1982, p. 71.

    Google Scholar 

  135. Blahser S. Topography, ontogeny, and functional aspects of immunoreactive neuropeptide systems in the domestic fowl. In: S.I. Mikami, K. Homma, M. Wada (Eds.), Avian Endocrinology. Spinger-Verlag, Berlin, Heidelberg, 1983, p. 11.

    Google Scholar 

  136. Weindl A., Sofroniew M.V. Peptide neurohormones and circumventricular organs in the pigeon. Front. Horm. Res., 9: 88, 1982.

    CAS  Google Scholar 

  137. Berk M.L., Finkelstein J.A. Long descending projections of the hypothalamus in the pigeon, Columba livia. J. Comp. Neurol. 220: 127, 1983.

    PubMed  CAS  Google Scholar 

  138. Sofroniew M.V. Vasopressin- and neurophysin-immunoreactive neurons in the septal region, medial amygdala and locus coeruleus in colchicine treated rats. Neuroscience 15: 347, 1985.

    PubMed  CAS  Google Scholar 

  139. DeVries G.J., Buijs R.M., van Leuween F.W., Caffé A.R., Swaab D.F. The vasopressinergic innervation of the brain in normal and castrated rats. J. Comp. Neurol. 233: 236, 1985.

    PubMed  CAS  Google Scholar 

  140. Buijs R.M., de Vries G.J., van Leeuwen F.W., Swaab D.F. Vasopressin and Oxitocin: distribution and putative functions in the brain. In: B.A. Cross, G. Leng (Eds.) The neurohypophysis: Structure, function and control. Elsevier, Amsterdam, 1983, p. 115.

    Google Scholar 

  141. Ramieri G., Gray D.A., Simon-Oppermann Ch., Panzica G.C., Viglietti-Panzica C. Immunohistochemical demonstration of angiotensin-like material in the avian hypothalamus. Neurosci. Lett. (Suppl. 18): 97, 1984, (Abstract).

  142. Ramieri G. An angiotensin-like immunoreactive neuronal system in the avian hypothalamus. Boll. Soc. Biol. Sper. in press.

  143. Hoffman W.E., Krupp L., Schrag D., Nilvaer G., Valiquette G., Kilcoyne M.M., Wimmerman E.A. Angiotensin immunoreactive in vasopressin cells in rat hypothalamus and its relative deficiency in homozygous Brattleboro rats. Ann. N.Y. Acad Sci. 394: 135, 1982.

    PubMed  CAS  Google Scholar 

  144. Ray C.P.K., Ameen A.M. Vasopressin immunoreactivity in the periventricular anterior hypothalamus. J. Anat. 158: 234, 1988 (Absract).

    Google Scholar 

  145. Nurnberger F. Der Hypothalamus des igels (Erinaceus Europaeus L) unter besonderer berucksichtigung des Winterschlafes. Cytoarchitektonische und immunocytochemische Studien. Thesis, Fachbereich Biologie, Universitat Marburg, 1983.

  146. Viglietti-Panzica C., Levi A.C., Panzica G.C. The hypothalamo-neurohypophysial system of the common marmoset. An immunohistochemical study. Neurosci. Lett. (Suppl.) 33: 201, 1988.

    Google Scholar 

  147. Castel M., Morris J.F. The neurophysin-containing innervation of the forebrain of the mouse. Neuroscience 24: 937, 1988.

    PubMed  CAS  Google Scholar 

  148. Hayward J.N., Vincent J.D. Osmosensitive single neurons in the hypothalamus of nonunaesthetized monkeys. J. Physiol. (London) 210: 947, 1980.

    Google Scholar 

  149. Leng G., Mason W.T., Dyer R.G. The supraoptic nucleus as an osmoreceptor. Neuroendocrinology 34: 35, 1982.

    Google Scholar 

  150. Raichle M.E., Grubb R.L. Jr. Regulation of brain water permeability by centrally-released vasopressin. Brain Res. 143: 19, 1978.

    Google Scholar 

  151. Kretzschman R., Landgraf R., Gjedde A., Ermisch A. Vasopressin binds to microvessels from rat hippocampus. Brain Res. 380: 325, 1986.

    Google Scholar 

  152. Rodriguez E.M. The cerebrospinal fluid as a pathway in neuroendocrine integration. J. Endocrinol. 71: 407, 1976.

    PubMed  CAS  Google Scholar 

  153. Rodriguez E.M., Pena S., Rodriguez S., Aguado L.I. Evidence for the participation of the CSF and periventricular structures in certain neuroendocrine mechanisms. Front. Horm. Res. 9: 142, 1982.

    CAS  Google Scholar 

  154. Piekut D.T., Joseph S.A. Co-existence of CRF and vasopressin immunoreactivity in parvocellular neurons of rat hypothalamus. Peptides 7: 891, 1986.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramieri, G., Panzica, G.C. Comparative neuroanatomical aspects of the salt and water balance in birds and mammals. J Endocrinol Invest 12, 59–74 (1989). https://doi.org/10.1007/BF03349923

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03349923

Key-words

Navigation