Skip to main content
Log in

Vascular remodeling and mineralocorticoids

  • Views
  • Facts, perspectives and opinions on selected topics
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Circulating mineralocorticoid hormones are so named because of their important homeostatic properties that regulate salt and water balance via their action on epithelial cells. A broader range of functions in nonclassic target cellular sites has been proposed for these steroids and includes their contribution to wound healing following injury. A chronic, inappropriate (relative to intravascular volume and dietary sodium intake) elevation of these circulating hormones evokes a wound healing response in the absence of tissue injury — a wound healing response gone awry. The adverse remodeling of vascularized tissues seen in association with chronic mineralocorticoid excess is the focus of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weber K.T. Hormones and fibrosis: a case for lost reciprocal regulation. News Physiol. Sci. 9: 123, 1994.

    Google Scholar 

  2. Weinstock J.V. The significance of angiotensin I converting enzyme in granulomatous inflammation. Functions of ACE in granulomas. Sarcoidosis 3: 19, 1986.

    CAS  Google Scholar 

  3. Weber K.T., Sun Y., Katwa L.C., Cleutjens J.P.M. Connective tissue: a metabolic entity? J. Mol. Cell. Cardiol. 27: 107, 1995.

    Article  PubMed  CAS  Google Scholar 

  4. Selye H. The general adaptation syndrome and the diseases of adaptation. J. Clin. Endocrinol. 6: 117, 1946.

    Article  CAS  Google Scholar 

  5. Taubenhaus M., Amromin G.D. Influence of steroid hormones on granulation tissue Endocrinology 44: 359, 1949.

    Article  PubMed  CAS  Google Scholar 

  6. Robertson W. van B., Sanborn E.C. Hormonal effects on collagen formation in granulomas. Endocrinology 63: 250, 1958.

    Article  PubMed  CAS  Google Scholar 

  7. Schiller E. The influence of hormones on the development of silicotic nodules produced by intraperitoneal injection of quartz. Br. J. Indust. Med. 10: 1, 1953.

    CAS  Google Scholar 

  8. Ragan C., Howes E.L., Plotz C.M., Meyer K., Blunt J.W. Effect of cortisone on production of granulation tissue in the rabbit. Proc. Soc. Exp. Biol. Med. 72: 718, 1949.

    Article  PubMed  CAS  Google Scholar 

  9. Gerarde H.W., Jones M. The effect of cortisone on collagen synthesis in vitro. J. Biol. Chem. 201: 553, 1953.

    PubMed  CAS  Google Scholar 

  10. Pirani C.L., Stepto R.C., Sutherland K. Desoxycorticosterone acetate and wound healing. J. Exp. Med. 93: 217, 1951.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  11. Hall C.E., Hall O. Hypertension and hypersalimentation. I. Aldosterone hypertension. Lab. Invest. 14: 285, 1965.

    CAS  Google Scholar 

  12. Brilla C.G., Pick R., Tan L.B., Janicki J.S., Weber K.T. Remodeling of the rat right and left ventricle in experimental hypertension. Circ. Res. 67: 1355, 1990.

    Article  PubMed  CAS  Google Scholar 

  13. Brilla C.G., Weber K.T. Reactive and reparative myocardial fibrosis in arterial hypertension in the rat. Cardiovasc. Res. 26: 671, 1992.

    Article  PubMed  CAS  Google Scholar 

  14. Sun Y., Ratajska A., Zhou G., Weber K.T. Angiotensin converting enzyme and myocardial fibrosis in the rat receiving angiotensin II or aldosterone. J. Lab. Clin. Med. 122: 395, 1993.

    PubMed  CAS  Google Scholar 

  15. Robert V., Van Thiem N., Cheav S.L., Mouas C., Swynghedauw B., Delcayre C. Increased cardiac types I and III collagen mRNAs in aldosterone-salt hypertension. Hypertension 24: 30, 1994.

    Article  PubMed  CAS  Google Scholar 

  16. Young M., Fullerton M., Dilley R., Funder J. Mineralocorticoids, hypertension, and cardiac fibrosis. J. Clin. Invest. 93: 2578, 1994.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  17. Brilla CG., Weber K.T. Mineralocorticoid excess, dietary sodium and myocardial fibrosis. J. Lab. Clin. Med. 120: 893, 1992.

    PubMed  CAS  Google Scholar 

  18. Brilla C.G., Matsubara L.S., Weber K.T. Anti-aldosterone treatment and the prevention of myocardial fibrosis in primary and secondary hyperaldosteronism. J. Mol. Cell. Cardiol. 25: 563, 1993.

    Article  PubMed  CAS  Google Scholar 

  19. Gómez Sánchez E.P. Mineralocorticoid modulation of central control of blood pressure. Steroids 60: 69, 1995.

    Article  PubMed  Google Scholar 

  20. Skelton F.R. The production of hypertension, nephrosclerosis and cardiac lesions by methylandrostenediol treatment in the rat. Endocrinology 53: 492, 1953.

    Article  PubMed  CAS  Google Scholar 

  21. Molteni A., Brownie A.C., Skelton F.R. Production of hypertensive vascular disease in the rat by methyltestosterone. Lab. Invest. 21: 129, 1969.

    PubMed  CAS  Google Scholar 

  22. Molteni A., Nickerson P.A., Brownie A.C., Liu K. Effect of an ergoline derivative-nicergoline (SermionReg) on methylandrostenediol-induced hypertension in the rat. Arch. Int. Pharmacodyn. Ther. 247: 119, 1980.

    PubMed  CAS  Google Scholar 

  23. Salgado E., Selye H. The role of the adrenals in the production of cardiovascular and renal changes by methylandrostenediol. Arch. Int. Physiol. 62: 352, 1954.

    CAS  Google Scholar 

  24. Fink C.S., Gallant S., Brownie A.C. Peripheral serum corticosteroid concentrations in relation to the rat adrenal cortical circadian rhythm in androgen-induced hypertension. Hypertension 2: 617, 1980.

    Article  PubMed  CAS  Google Scholar 

  25. Brownie A.C., Bhasker C.R., Waterman M.R. Levels of adrenodoxin, NADPH-cytochrome P-450 reductase and cytochromes P-45011β, P-45021, P-450scc, in adrenal zona fasciculata-reticularis tissue from androgen-treated rats. Mol. Cell. Endocrinol. 55: 15, 1988.

    Article  PubMed  CAS  Google Scholar 

  26. Michna H. Collagen fibril dynamics in the anulus fibrosus induced by an anabolic steroid hormone. Acta Anat. (Basel) 135: 12, 1989.

    Article  CAS  Google Scholar 

  27. Campbell S.E., Janicki J.S., Matsubara B.B., Weber K.T. Myocardial fibrosis in the rat with mineralocorticoid excess: prevention of scarring by amiloride. Am. J. Hypertens. 6: 487, 1993.

    PubMed  CAS  Google Scholar 

  28. Darrow D.C., Miller H.C. The production of cardiac lesions by repeated injections of desoxycorticosterone acetate. J. Clin. Invest. 21: 601, 1942.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Funder J.W., Duval D., Meyer P. Cardiac glucocorticoid receptors: the binding of tritiated dexamethasone in rat and dog heart. Endocrinology 93: 1300, 1973.

    Article  PubMed  CAS  Google Scholar 

  30. Pearce P., Funder J.W. High affinity aldosterone binding sites (type I receptors) in rat heart. Clin. Exp. Pharmacol. Physiol. 14: 859, 1987.

    Article  PubMed  CAS  Google Scholar 

  31. Meyer W.J. III, Nichols N.R. Mineralocorticoid binding in cultured smooth muscle cells and fibroblasts from rat aorta. J. Steroid Biochem. 14: 1157, 1981.

    Article  PubMed  CAS  Google Scholar 

  32. Lombès M., Oblin M.-E., Gasc J.-M., Baulieu E.E., Farman N., Bonvalet J.-P. Immunohistochemical and biochemical evidence for a cardiovascular mineralocorticoid receptor. Circ. Res. 71: 503, 1992.

    Article  PubMed  Google Scholar 

  33. Slight S., Ganjam V.K., Nonneman D.J., Weber K.T. Glucocorticoid metabolism in the cardiac interstitium: 11ß-hydroxysteroid dehydrogenase activity in cardiac fibroblasts. J. Lab. Clin. Med. 122: 180, 1993.

    PubMed  CAS  Google Scholar 

  34. Slight S., Ganjam V.K., Weber K.T. Species diversity of 11ß-hydroxysteroid dehydrogenase in the cardiovascular system. J. Lab. Clin. Med. 124: 821, 1994.

    PubMed  CAS  Google Scholar 

  35. Allen S., Nonneman D., Slight S., Ganjam V., Weber K.T. Mineralocorticoid receptors are expressed in MG-63 osteoblast-like cells (Abstract). Clin. Res. 41: 665A, 1993.

    Google Scholar 

  36. Brilla C.G., Zhou G., Matsubara L., Weber K.T. Collagen metabolism in cultured adult rat cardiac fibroblasts: response to angiotensin II and aldosterone. J. Mol. Cell. Cardiol. 26: 809, 1994.

    Article  PubMed  CAS  Google Scholar 

  37. Zhou G., Tyagi S.C., Weber K.T. Bradykinin regulates collagen turnover in cardiac fibroblasts (Abstract). Clin. Res. 41: 630A, 1993.

    Google Scholar 

  38. Weber K.T., Janicki J.S., Shroff S.G., Pick R., Chen R.M., Bashey R.I. Collagen remodeling of the pressure-overloaded, hypertrophied nonhuman primate myocardium. Circ. Res. 62: 757, 1988.

    Article  PubMed  CAS  Google Scholar 

  39. Medugorac I. Collagen content in different areas of normal and hypertrophied rat myocardium. Cardiovasc. Res. 14: 551, 1980.

    Article  PubMed  CAS  Google Scholar 

  40. Hatakeyama H., Miyamori I., Fujita T., Takeda Y., Takeda R., Yamamoto H. Vascular aldosterone. Biosynthesis and a link to angiotensin II-induced hypertrophy of vascular smooth muscle cells. J. Biol. Chem. 269: 24316, 1994.

    PubMed  CAS  Google Scholar 

  41. Campbell S.E., Diaz-Arias A.A., Weber K.T. Fibrosis of the human heart and systemic organs in adrenal adenoma. Blood Press. 1: 149, 1992.

    Article  PubMed  CAS  Google Scholar 

  42. Potts J.L., Dalakos T.G., Streeten D.H.P., Jones D. Cardiomyopathy in an adult with Bartter’s syndrome: hemodynamic, angiographic, and metabolic studies. Am. J. Cardiol. 40: 995, 1977.

    Article  PubMed  CAS  Google Scholar 

  43. Doering C.W., Jalil J.E., Janicki J.S., Pick R., Aghili S., Abrahams C., Weber K.T. Collagen network remodeling and diastolic stiffness of the rat left ventricle with pressure overload hypertrophy. Cardiovasc. Res. 22: 686, 1988.

    Article  PubMed  CAS  Google Scholar 

  44. Jalil J.E., Doering C.W., Janicki J.S., Pick R., Shroff S.G., Weber K.T. Fibrillar collagen and myocardial stiffness in the intact hypertrophied rat left ventricle. Circ. Res. 64: 1041, 1989.

    Article  PubMed  CAS  Google Scholar 

  45. Jalil J.E., Janicki J.S., Pick R., Weber K.T. Coronary vascular remodeling and myocardial fibrosis in the rat with renovascular hypertension: response to captopril. Am. J. Hypertens. 4: 51, 1991.

    PubMed  CAS  Google Scholar 

  46. Funder J.W. Target tissue specificity of mineralocorticoids. Trends Endocrinol. Metab. 1: 145, 1990.

    Article  PubMed  CAS  Google Scholar 

  47. Rosen H., Blumenthal A., McCallum J. Effect of Asiaticoside on wound healing in the rat. Proc. Soc. Exp. Biol. Med. 125: 279, 1967.

    Article  PubMed  CAS  Google Scholar 

  48. Sloan J., Weaver J.A. A case of polyarteritis developing after carbenoxolone therapy. Ir. J. Med. Sci. 1: 505, 1968.

    Article  Google Scholar 

  49. Goodier T.E.W. Histopathology of gastric ulcers treated with carbenoxolone. In: Robson J.M., Sullivan F.M. (Eds.), Carbenoxolone sodium. Butterworths, London, 1968, p. 111.

    Google Scholar 

  50. Fraser P.M., Doll R., Langman M.J.S., Misiewicz J.J., Shawdon H.H. Clinical trial of a new carbenoxolone analogue (BX24), zinc sulphate, and vitamin A in the treatment of gastric ulcer. Gut 13: 459, 1972.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  51. Thompson R.C. Jr., Ludewig R.M., Wangensteen S.L., Rudolf L.M. Effects of heparin on wound healing. Surg. Gynecol. Obstet. 134: 22, 1972.

    PubMed  Google Scholar 

  52. Carter J.R., Hagen A.A., Biggs J.T., Troop R.C. Inhibition of adrenal steroid metabolism by heparin in vivo. Metabolism 17: 352, 1968.

    Article  PubMed  CAS  Google Scholar 

  53. Wright T.C. Jr., Pukac L.A., Castellot J.J. Jr., Karnovsky M.J., Levine R.A., Kim-Park H.-Y., Campisi J. Heparin suppresses the induction of c-fos and c-myc mRNA in murine fibroblasts by selective inhibition of a protein kinase C-dependent pathway. Proc. Natl Acad. Sci. U.S.A. 86: 3199, 1989.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Del Vecchio P.J., Bizios R., Holleran L.A., Judge T.K., Pinto G.L. Inhibition of human scierai fibroblast proliferation with heparin. Invest. Ophthalmol. Vis. Sci. 29: 1272, 1988.

    PubMed  Google Scholar 

  55. Azukizawa S., Iwasaki I., Kigoshi T., Uchida K., Morimoto S. Effects of heparin treatments in vivo and in vitro on adrenal angiotensin II receptors and angiotensin II-induced aldosterone production in rats. Acta Endocrinol. (Copenh.) 119: 367, 1988.

    CAS  Google Scholar 

  56. Bailey R.E., Ford H.C. The effect of heparin on sodium conservation and on the plasma concentration, the metabolic clearance and the secretion and excretion rates of aldosterone in normal subjects. Acta Endocrinol. (Copenh.) 60: 249, 1969.

    CAS  Google Scholar 

  57. O’Kelly R., Magee F., McKenna T.J. Routine heparin therapy inhibits adrenal aldosterone production. J. Clin. Endocrinol. Metab. 56: 108, 1983.

    Google Scholar 

  58. Sherman R.A., Ruddy M.C. Suppression of aldosterone production by low-dose heparin. Am. J. Nephrol. 6: 165, 1986.

    Article  PubMed  CAS  Google Scholar 

  59. Kageyama Y., Suzuki H., Saruta T. Effects of routine heparin therapy on plasma aldosterone concentration. Acta Endocrinol. (Copenh.) 124: 267, 1991.

    CAS  Google Scholar 

  60. Wilson I.D., Goetz F.C. Selective hypoaldosteronism after prolonged hepr arin administration. Am. J. Med. 36: 635, 1964.

    Article  PubMed  CAS  Google Scholar 

  61. Thompson R.C. Jr. Heparin osteoporosis: an experimental model using rats. J. Bone Joint Surg. Am. 55-A: 606, 1973.

    Google Scholar 

  62. Sarzani R., Brecher P., Chobanian A.V. Growth factor expression in aorta of normotensive and hypertensive rats. J. Clin. Invest. 83: 1404, 1989.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weber, K.T., Sun, Y., Campbell, S.E. et al. Vascular remodeling and mineralocorticoids. J Endocrinol Invest 18, 533–539 (1995). https://doi.org/10.1007/BF03349764

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03349764

Keywords

Navigation