Skip to main content
Log in

Molecular basis for the properties of the thyroxine-binding globulin-slow variant in American Blacks

  • Short Communication
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Thyroxine — binding globulin — slow (TBG-S), a variant found in 4-12% of Black and Pacific Island populations, is inherited as an X-chromosome linked trait. This variant is detected on isoelectric focusing by the characteristic cathodal shift of all its isoforms, suggesting that the difference resides in the core protein. In addition, TBG-S is slightly more thermolabile, which explains why subjects expressing TBG-S have on the average lower serum TBG, and thus reduced T4, concentrations. We now report the molecular basis for this TBG variant, deduced from sequencing the TBG-S gene of an American Black man. Sequencing of the four coding regions and all intron/exon junctions revealed a single nucleotide substitution in the codon for amino acid 171 of the mature protein. The resulting change of the codon GAC to AAC results in replacement of the normal aspartic acid by asparagine. Since the negative charge provided by the aspartic acid is lost when replaced.by the neutral asparagine, this substitution seems responsible for the cathodal shift on isoelectric focusing and slower electrophoretic mobility of TBG-S. An identical nucleotide substitution was identified in an unrelated American Black man expressing TBG-S. Whether the TBG-S phenotype observed in populations from the Pacific Islands is caused by the same mutation remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Robbins J., Cheng S.-Y., Gerschengorno M.C., Glinoer D., Cahnmann H.J., Edelnoch H. Thyroxine transport proteins of plasma. Molecular properties and biosynthesis. Rec. Prog. Horm. Res. 84: 477, 1978.

    Google Scholar 

  2. Refetoff S. Thyroid function tests. In: L. J. DeGroot (Eds.), Endocrinology. Grune & Stratton, New York, 1979, p. 387.

    Google Scholar 

  3. Gershengorn M.C., Cheng S.-Y., Lippoldt R.E., Lord R.B., Robbins J. Characterization of human thyroxine-binding globulin. Evidence for a single polypeptide chain. J. Biol. Chem. 252:8713, 1977.

    PubMed  CAS  Google Scholar 

  4. Hocman G. Human thyroxine binding globulin. Rev. Physiol. Biochem. Pharmacol. 81: 45, 1981.

    Google Scholar 

  5. Chandra T., Stackhouse R., Kidd V.J., Robson K.J.H., Woo S.L.C. Sequence homology between human α1-antichy-motrypsin, α1-antitrypsin, and antithrombin III. Biochemistry 22: 5055, 1983.

    Article  PubMed  CAS  Google Scholar 

  6. Long G.L., Chandra T., Woo S.L.C., Davie E.W., Kurachi K. Complete sequence of the cDNA for human α1-antitrypsin and the gene for the S variant. Biochemistry 23: 4828, 1984.

    Article  PubMed  CAS  Google Scholar 

  7. Flink I.L., Bailey T.J., Gustefson T.A., Markham B.E., Morkin E. Complete amino acid sequence of human thyroxine-binding globulin deduced from cloned DNA: closed homology to the serine antiproteases. Proc. Natl. Acad. Sci. (USA) 83: 7708, 1986.

    Article  CAS  Google Scholar 

  8. Hammond G.L., Smith C.L., Goping I.S., Underhill D.A., Harley M.J., Reventos J., Musto N.A., Gunsalus G.L., Bardin C.W. Primary structure of human corticosteroid binding globulin, deduced from hepatic and pulmonary cDNAs, exhibits homology with serine protease inhibitors. Proc. Natl. Acad. Sci. (USA) 84: 5153, 1987.

    Article  CAS  Google Scholar 

  9. Nikolai T.F., Seal U.S. X-chromosome linked familial decrease in thyroxinebinding globulin deficiency. J. Clin. Endocrinol. Metab. 25: 835, 1966.

    Article  Google Scholar 

  10. Refetoff S., Robin N.I., Alper C.A. Study of four new kindreds with inherited thyroxine-binding globulin abnormalities: possible mutations of a single gene locus. J. Clin. Invest. 51:848, 972.

  11. Burr W.A., Ramsden D.B., Hoffenberg R. Hereditary abnormalities of thyroxine-binding globulin concentration. Q.J. Med. 49:295, 1980.

    PubMed  CAS  Google Scholar 

  12. Trent J.M., Flink I.L., Morkin E., Van Tuinen P., Ledbetter D.H. Localization of the human thyroxine-binding globulin gene to the long arm of the X chromosome (Xq21-22) Am. J. Hum. Genet. 41: 428, 1987.

    PubMed Central  PubMed  CAS  Google Scholar 

  13. Daiger S.P., Rummel D.P., Wang L., Cavalli-Sforza L.L. Detection of genetic variation with radioactive ligands. IV. X-linked, polymorphic genetic variation of thyroxin-binding globulin (TBG). Am. J. Hum. Genet. 33: 640, 1981.

    PubMed Central  PubMed  CAS  Google Scholar 

  14. Daiger S.P., Wildin R.S. Human thyroxine-binding globulin (TBG): Heterogeneity within individuals and among individuals demonstrated by isoelectric focusing. Biochem. Genet. 19: 673, 1981.

    Article  PubMed  CAS  Google Scholar 

  15. Takamatsu J., Ando M., Weinberg M., Refetoff S. Isoelectric focusing variant thyroxine-binding globulin (TBG-S) in American Blacks: Increased heat lability and reduced concentration in serum. J. Clin. Endocrinol. Metab. 63: 80, 1986

    Article  PubMed  CAS  Google Scholar 

  16. Kamboh M.I., Ferrel R.E. A sensitive immunoblotting technique to identify thyroxine-binding globulin protein heterogeneity after isoelectric focusing. Biochem. Genet. 24: 273, 1986.

    Article  PubMed  CAS  Google Scholar 

  17. Kamboh M.I., Kirwood C. Genetic polymorphism of thyroxin-binding globulin (TBG) in the Pacific area. Am. J. Hum. Genet. 36: 646, 1984.

    PubMed Central  PubMed  CAS  Google Scholar 

  18. Whitehouse D.B., Hopkinson D.A., Hill A.V.S., Bowden D.K. Analysis of genetic variation in two human thyroxinebinding plasma proteins by immunodetection after isoelectric focusing. Am. J. Hum. Genet. 49: 259, 1985.

    Article  CAS  Google Scholar 

  19. Refetoff S. 1989 (Unpublished).

  20. Refetoff S., Murata Y. X-chromosome — linked inheritance the variant thyroxine-binding globulin in serum of Australian Aborigines: its physical, chemical and biological properties. J. Clin. Endocrinol. Metab. 60: 356, 1985.

    Article  PubMed  CAS  Google Scholar 

  21. Takeda K., Mori Y., Sobieszczyk S., Seo H., Dick M., Watson F., Flink I.L., Seino S., Bell G.I., Refetoff S. Sequence of the variant thyroxine-binding globulin of Australian Aborigines: only one of two amino acid remplacements is responsible for its altered properties. J. Clin. Invest. 83:1344, 1989.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Marshall J.S., Pensky J., Williams S. Studies on human thyroxine binding globulin. VIII. Isoelectric focusing evidence for microheterogeneity of thyroxine binding globulin. Arch. Biochem. Biophys. 156: 456, 1978.

    Article  Google Scholar 

  23. Lasne F., Benzerara O., Lasne Y. Role of sialic acid in the microheterogeneity of serum thyroxine binding globulin. Study by two-dimensional isoelectric focusing. Biochim. Biophys. Acta 708: 49, 1982.

    Article  Google Scholar 

  24. Gartner R., Henze R., Horn K., Pickardt C.R., Scriba P.C. Thyroxine-binding globulin: investigation of microheterogeneity. J. Clin. Endocrinol. Metab. 52: 657, 1981.

    Article  PubMed  CAS  Google Scholar 

  25. Grimaldi S., Bartalena L., Ramacciotti C., Robbins J. Polymorphism of human thyroxine-binding globulin. J. Clin. Endocrinol. Metab. 57:1186, 1983.

    Article  PubMed  CAS  Google Scholar 

  26. Bell G.I., Karam J.H., Rutter W.J. Polymorphic DNA region adjacent to the 5′ end of the human insulin gene. Proc. Natl. Acad. Sci. (USA) 78: 5759, 1981.

    Article  CAS  Google Scholar 

  27. Saiki R.K., Gelfand D.H., Stoffel S., Scharf S.J., Higuchi R., Horn G.T., Mullis K.B., Erlich H.A. Primer-directed enzymatic amplification of DNA with thermostable DNA polymerase. Science 239: 481, 1988.

    Article  Google Scholar 

  28. Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. (USA) 74: 5463, 1977.

    Article  PubMed Central  CAS  Google Scholar 

  29. Mori Y., Seino S., Takeda K., Flink I.L., Murata Y., Bell G.I., Refetoff S. A mutation causing reduced biological activity and stability of thyroxine-binding globulin probably as a result of abnormal glycosylation of the molecule. Mol. Endocrinol. 3: 575, 1989.

    Article  PubMed  CAS  Google Scholar 

  30. Ain K.B., Mori Y., Refetoff S. Reduced clearance rate of thyroxine-binding globulin (TBG) with increased sialylation: a mechanism for estrogen induced elevation of serum TBG concentration. J. Clin. Endocrinol. Metab. 65: 689, 1987.

    Article  PubMed  CAS  Google Scholar 

  31. Wilson J.M., Kelly W.N. Molecular basis of hypoxanthine-guanine phosphoribosyl-transferase deficiency in a patient with the Lesch-Nyhan syndrome. J. Clin. Invest. 77:1331, 1983.

    Article  Google Scholar 

  32. Menzel H.-J., Assmann G., Rail S.C. Jr., Weisgraber K.H., Mahley R.W. Human apolipoprotein A-l polimorphism: identification of amino acid substitutions in three electrophoretic variants of the Munster-3 type. J. Biol. Chem. 259: 3070, 1984.

    PubMed  CAS  Google Scholar 

  33. Moo-Penn W.F., Je D.L., Johnson M.H., Wilson S.M., Therrell B. Jr., Schmidt R.M. Hemoglobin Tarrant: α126(H9) Asp→Asn. A new hemoglobin variant in the α1β1 contact region showing high oxygen affinity and reduced cooperativity. Biochim. Biophys. Acta 490: 443, 1977.

    Article  PubMed  CAS  Google Scholar 

  34. Ohba Y., Miyaji T., Matsuoka M., Takeda I., Fukuba Y., Shibata S., Ohkura K. Hemoglobin Matsue-Oki: Alpha 75 (EF 4) aspartic acid→asparagine. Hemoglobin 1: 383, 1977.

    Article  PubMed  CAS  Google Scholar 

  35. Brimhall B., Duerst M., Hollán S.R., Stenzel P., Szelényi J., Jones R.T. Structural characterizations of hemoglobins J-Buda [α61 (E 10) Lys→Asn] and G-Pest [α74 (EF 3) Asp→Ans]. Biochim. Biophys. Acta 336: 344, 1974.

    Article  CAS  Google Scholar 

  36. Sugihara J., Yokota E., Kagimoto M., Naito Y., Imamura T. Hemoglobin G Waimanalo: α64 (E 13) aspartic acid→asparagine observed in a Japanese family. Hemoglobin 8: 79, 1984.

    Article  PubMed  CAS  Google Scholar 

  37. Takamatsu J. Refetoff S., Charbonneau M., Dussault J.H. Two new inherited defects of the thyroxine-binding globulin (TBG) molecule presenting as partial TBG deficiency. J. Clin. Invest. 79:833, 1987.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  38. Murata Y., Takamatsu J., Refetoff S. Inherited abnormality of thyroxine-binding globulin with no demonstrable thyroxine-binding activity and high serum levels of denatured thyroxine-binding globulin. N. Engl. J. Med. 314:694, 1986

    Article  PubMed  CAS  Google Scholar 

  39. Murata Y., Refetoff S., Same D.H., Dick M., Watson F. Variant thyroxine-binding globulin in serum of Australian Aborigines: its physical, chemical and biological properties. J. Endocrinol. Invest. 8: 225, 1985.

    Article  PubMed  CAS  Google Scholar 

  40. Mori Y., Takeda K., Charbonneau M., Refetoff S. Cloning, and analysis of the coding sequence of the thyroxine-binding globulin (TBG) gene from a subject with inherited complete TBG deficiency. J. Clin. Endocrinol. Metab. 70: 804, 1989.

    Article  Google Scholar 

  41. Pemberton P.A., Stein P.E., Pepys M.B., Potter J.M., Carell R.W. Hormone binding globulins undergo serpin conformational change in inflammation. Nature 336: 257, 1988.

    Article  PubMed  CAS  Google Scholar 

  42. Refetoff S. Inherited thyroxine-binding globulin (TBG) abnormalities in man. Endocr. Rev. 10:275, 1989.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waltz, M.R., Pullman, T.N., Takeda, K. et al. Molecular basis for the properties of the thyroxine-binding globulin-slow variant in American Blacks. J Endocrinol Invest 13, 343–349 (1990). https://doi.org/10.1007/BF03349576

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03349576

Key-words

Navigation